OTGANISMS
DIVERSITY \& EVOLUTION

Genetic evidence of phenotypic polymorphism in the aeolid nudibranch Flabellina verrucosa (M. Sars, 1829) (Opisthobranchia: Nudibranchia)

Robert Eriksson*, Arne Nygren, Per Sundberg
Department of Zoology, Göteborg University, Box 463, 40530 Göteborg, Sweden

Received 15 November 2004; accepted 28 April 2005

Abstract

The conspecificity of two forms of Flabellina verrucosa (M. Sars, 1829), one form with short and one with long cerata, was tested by sequencing the mitochondrial COI and the nuclear $5.8 \mathrm{~S}-\mathrm{ITS} 2$ genes. We could not establish any genetic differences between the two forms and conclude that they belong to the same species. Thus, Flabellina verrucosa is polymorphic in ceratum length.

© 2005 Gesellschaft für Biologische Systematik. Published by Elsevier GmbH. All rights reserved.
Keywords: Molecular systematics; COI; 5.8S-ITS2; Flabellina verrucosa
See also Electronic Supplement at: http://www.senckenberg.de/odes/06-02.htm

Introduction

The nudibranch Flabellina verrucosa exists in two sympatrical forms (Figs. 1, 2; for color versions see an Organisms Diversity and Evolution Electronic Supplement at http://www.senckenberg.de/odes/06-02.htm) in the northern boreal-arctic region (e.g. Odhner 1907; Løyning 1922; Morse 1969; Thompson and Brown 1976; Kuzirian 1979). The short-cerata form was originally described as Eolidia verrucosa Sars, 1829, the longcerata form as Eolis rufibranchialis Johnston, 1832. Hereafter, we will refer to these forms as the verrucosa(short cerata) and rufibranchialis (long cerata) forms, respectively. Several authors have compared these two forms without finding any morphological differences other than in cerata shape and arrangement (Løyning 1922; Odhner 1922, 1926, 1939; Kuzirian 1979). This has

[^0]led to the uniting of the two forms under the name F. verrucosa (Sars) (e.g. Løyning 1922; Lemche 1941). One argument for this was the existence of an intermediate stage, which according to Løyning (1922) and Odhner (1939) has longer cerata than typical specimens of the verrucosa form, but shorter cerata than typical specimens of the rufibranchialis form. Intermediate stages have been considered an indicator of interbreeding populations (Raahauge and Kristensen 2000; Diekmann et al. 2001).

In the present study we investigate whether the ceratal differences (cf. Figs. 1, 2) are concordant with genetic differences, by comparing nucleotide sequences from both forms. The genes investigated are the mitochondrial protein-coding cytochrome c oxidase subunit I (COI), and the nuclear non-coding second internal transcribed spacer together with the contiguous 5.8 S gene (5.8S-ITS2). These genes have proven useful for investigations of close relationships in several taxa, including opisthobranchs (King et al. 1999; Medina and

Fig. 1. Flabellina verrucosa with short cerata, i.e. the verrucosa form; body length approx. 15 mm ; photographed in situ at Yttre Vattenholmen by R. Eriksson.

Fig. 2. Flabellina verrucosa with long cerata, i.e. the rufibranchialis form; body length approx. 25 mm ; photographed in situ at Jordfall by R. Eriksson.

Walsh 2000; Raahauge and Kristensen 2000; Kojima et al. 2001; Hertel et al. 2002).

Materials and methods

The animals were collected by SCUBA diving in the Gullmar fjord (at Jordfall: all rufibranchialis individuals) and in Strömstad archipelago (at Yttre Vattenholmen: verrucosa individuals nos. $1-9$; and at Lunneviken: verrucosa individuals nos. 10-15) in December 2003. Unique sequences were deposited at GenBank (see Table 1 for accession numbers). In total, 31 individuals were sequenced: 15 of the verrucosa-, and 16 of the rufibranchialis forms. Nudibranch tissue was stored in $70 \% \mathrm{EtOH}$ and/or in RNAlater ${ }^{\mathrm{TM}}$. DNA was extracted with the DNeasy Tissue Kit (Qiagen), according to the manufacturer's protocols. We used primers LCO1490

Table 1. Sequenced individuals: individual number, collecting site, collecting depth, and GenBank accession numbers for the sequenced COI and 5.8S-ITS2 genes

No.	Site	Depth (m)	Accession numbers	
			COI	5.8S-ITS2
rufil	Jordfall	3-5	AB180812	AB180831
rufi2			AB180813	AB180832
rufi			AB180812	
rufi4			AB180812	
rufi5			AB180814	
rufi6			AB180812	AB180833
rufi 7			AB180812	
rufi8			AB180812	
rufi9			AB180815	
rufil0			AB180812	
rufill			AB180812	
rufil2			AB180816	
rufil3			AB180817	
rufil			AB180818	
rufil5			AB180812	
rufil6			AB180819	
verr1	Yttre Vattenholmen	20-25		AB180834
verr2			AB180817	AB180835
verr3			AB180816	AB180835
verr4			AB180820	
verr5			AB180821	
verr6			AB180822	
verr7			AB180823	
verr8			AB180824	
verr9			AB180825	
verr10	Lunneviken	20-25	AB180826	AB180836
verr11			AB180827	
verr12			AB180812	AB180837
verr13			AB180828	
verr14			AB180829	
verr15			AB180830	

Note that identical sequences are deposited under one accession number.
Abbreviations: rufi $=$ rufibranchialis, verr $=$ verrucosa.
and HCO 2198 (Folmer et al. 1994) for COI, and ITS1d and ITS4r (Oliverio and Mariottini 2001) for 5.8S-ITS2, in both amplification and sequence reactions. Amplification of the PCR product was made with TaKaRa LA Taq (Takara Bio Inc.) according to the supplied protocol, using the following temperature profile: $96^{\circ} \mathrm{C} /$ $120 \mathrm{~s}-\left(94^{\circ} \mathrm{C} / 30 \mathrm{~s}-47^{\circ} \mathrm{C} / 30 \mathrm{~s}-72^{\circ} \mathrm{C} / 60 \mathrm{~s}\right) \times 40-72^{\circ} \mathrm{C} / 480 \mathrm{~s}$ for COI, and $96^{\circ} \mathrm{C} / 120 \mathrm{~s}-\left(93^{\circ} \mathrm{C} / 30 \mathrm{~s}-a^{\circ} \mathrm{C} / 30 \mathrm{~s}-72^{\circ} \mathrm{C} /\right.$ $60 \mathrm{~s}) \times 45-72{ }^{\circ} \mathrm{C} / 420 \mathrm{~s}$ for 5.8 S -ITS2 (where $a=48-60$). PCR products were purified with the QIAquick PCR purification kit (Qiagen), and DNA concentrations were measured with a Hoefer Dyna Quant 200 fluorometer. Each sequence mixture contained $1 \mu \mathrm{l}$ primer (5 mM), $4 \mu \mathrm{l}$ DTCS Quick Start Mix, purified amplification
Table 2. COI sequence distance matrix; distances expressed as percent difference between two sequences

rufil	-																														
rufi2	1.0	-																													
rufi3	0.0	1.0	-																												
rufi 4	0.0	1.0	0.0	-																											
rufi 5	1.3	1.0	1.3	1.3	-																										
rufic	0.0	1.0	0.0	0.0	1.3	-																									
rufi 7	0.0	1.0	0.0	0.0	1.3	0.0	-																								
rufi8	0.0	1.0	0.0	0.0	1.3	0.0	0.0	-																							
rufi9	0.5	1.5	0.5	0.5	1.9	0.5	0.5	0.5	-																						
rufil0	0.0	1.0	0.0	0.0	1.3	0.0	0.0	0.0	0.5	-																					
rufil1	0.0	1.0	0.0	0.0	1.3	0.0	0.0	0.0	0.5	0.0	-																				
rufil2	0.5	0.8	0.5	0.5	1.2	0.5	0.5	0.5	1.0	0.5	0.5	-																			
rufil 1	0.8	0.5	0.8	0.8	0.5	0.8	0.8	0.8	1.4	0.8	0.8	0.7	-																		
rufil	0.2	1.2	0.2	0.2	1.5	0.2	0.2	0.2	0.7	0.2	0.2	0.7	1.0	-																	
rufil	0.0	1.0	0.0	0.0	1.3	0.0	0.0	0.0	0.5	0.0	0.0	0.5	0.8	0.2	-																
rufi 16	1.0	0.7	1.0	1.0	0.7	1.0	1.0	1.0	1.5	1.0	1.0	0.8	0.2	1.2	1.0	-															
verr2	0.8	0.5	0.8	0.8	0.5	0.8	0.8	0.8	1.4	0.8	0.8	0.7	0.0	1.0	0.8	0.2	-														
verr3	0.5	0.8	0.5	0.5	1.2	0.5	0.5	0.5	1.0	0.5	0.5	0.0	0.7	0.7	0.5	0.8	0.7	-													
verr4	0.3	0.7	0.3	0.3	1.0	0.3	0.3	0.3	0.8	0.3	0.3	0.2	0.5	0.5	0.3	0.7	0.5	0.2	-												
verr5	0.7	0.3	0.7	0.7	0.7	0.7	0.7	0.7	1.2	0.7	0.7	0.5	0.2	0.8	0.7	0.3	0.2	0.5	0.3	-											
verr6	1.0	0.7	1.0	1.0	0.7	1.0	1.0	1.0	1.5	1.0	1.0	0.8	0.2	0.8	1.0	0.3	0.2	0.8	0.7	0.3	-										
verr7	1.0	0.7	1.0	1.0	0.7	1.0	1.0	1.0	1.5	1.0	1.0	0.8	0.2	1.2	1.0	0.3	0.2	0.8	0.7	0.3	0.3	-									
verr8	0.3	0.7	0.3	0.3	1.0	0.3	0.3	0.3	0.8	0.3	0.3	0.2	0.5	0.5	0.3	0.7	0.5	0.2	0.0	0.3	0.7	0.7	-								
verr9	0.8	1.2	0.8	0.8	1.5	0.8	0.8	0.8	1.4	0.8	0.8	0.7	1.0	1.0	0.8	1.2	1.0	0.7	0.5	0.8	1.2	1.2	0.5	-							
verr10	0.7	1.0	0.7	0.7	1.4	0.7	0.7	0.7	1.2	0.7	0.7	0.2	0.8	0.8	0.7	1.0	0.8	0.2	0.3	0.7	1.0	1.0	0.3	0.8	-						
verrl1	0.8	1.2	0.8	0.8	1.5	0.8	0.8	0.8	1.4	0.8	0.8	0.7	1.0	1.0	0.8	1.2	1.0	0.7	0.5	0.8	1.2	1.2	0.5	1.0	0.8	-					
verr12	0.0	1.0	0.0	0.0	1.3	0.0	0.0	0.0	0.5	0.0	0.0	0.5	0.8	0.2	0.0	1.0	0.8	0.5	0.3	0.7	1.0	1.0	0.3	0.8	0.7	0.8	-				
verr13	0.8	1.2	0.8	0.8	1.5	0.8	0.8	0.8	1.4	0.8	0.8	0.7	1.0	1.0	0.8	1.2	1.0	0.7	0.5	0.8	1.2	1.2	0.5	1.0	0.8	1.0	0.8	-			
verr14	0.7	1.7	0.7	0.7	2.0	0.7	0.7	0.7	1.2	0.7	0.7	1.2	1.5	0.8	0.7	1.7	1.5	1.2	1.0	1.4	1.7	1.7	1.0	1.5	1.4	1.5	0.7	1.5	-		
verr15	0.7	1.0	0.7	0.7	1.4	0.7	0.7	0.7	1.2	0.7	0.7	0.5	0.8	0.8	0.7	1.0	0.8	0.5	0.3	0.7	1.0	1.0	0.3	0.5	0.7	0.8	0.7	0.8	0.8	-	
AJ223254	18.4	18.5	18.4	18.4	18.7	18.4	18.4	18.4	18.5	18.4	18.4	18.4	18.2	18.2	18.4	18.4	18.2	18.4	18.2	18.4	17.9	18.4	18.3	18.6	18.4	17.7	18.4	18.5	18.5	18.3	-

Note that PAUP ignores nucleotide sequence ambiguities, thus ambiguities do not contribute to sequence differences. The matrix includes the outgroup sequence AJ223254. For abbreviations see

[^1]product and $\mathrm{ddH}_{2} 0$ to a total volume of 10μ. The sequence reaction profile was as follows: $\left(96^{\circ} \mathrm{C} /\right.$ $\left.30 \mathrm{~s}-b^{\circ} \mathrm{C} / 30 \mathrm{~s}-60^{\circ} \mathrm{C} / 240 \mathrm{~s}\right) \times 30$ where $b=50-54$ for COI, and $b=50$ for 5.8S-ITS2. DNA sequences were obtained from a BeckmanCoulter ${ }^{\text {TM }}$ CEQ8000 Genetic Analysis System, and were subsequently edited and aligned with Lasergene (DNASTAR) using the CLUS-TAL-V algorithm (Higgins and Sharp 1989). Gap penalty and gap length penalty were both set to 10 . GenBank sequences from Acanthodoris pilosa (Abildgaard in O.F. Müller, 1789) were used as outgroups, as this was the closest species from which both COI and 5.8S-ITS2 sequences were available (accession numbers AJ223254 and AY014155). Sequence distances were calculated with PAUP* 4.0b10 (Swofford 2003). Haplotype networks were constructed using TCS 1.13 (gaps treated as fifth state), implementing the methods of Clement et al. (2000).

Results

COI

Fourteen individuals of the verrucosa- and 16 of the rufibranchialis form were sequenced partially (593 bp) for COI. Thirteen characters are parsimony informative. Nucleotide distances range between 0.0% and 2.0% within the ingroup. Outgroup-ingroup differences range between 17.7% and 18.7% (Table 2). There are 18 haplotypes (excluding the outgroup), of which three are shared between the verrucosa- and the rufibranchialis forms (Fig. 3).

5.8S-ITS2

Five individuals of the verrucosa- and three of the rufibranchialis form were sequenced for the complete 5.8 S -ITS2 (approx. 452 bp). Eight characters are parsimony informative, all confined to ITS2. Nucleotide distances range between 0.0% and 2.0% within the ingroup. Outgroup-ingroup differences range between 56.7% and 57.6% (Table 3). There are four haplotypes (excluding the outgroup); each individual of the rufibranchialis form represents its own separate haplotype, whereas all individuals of the verrucosa form belong to a single, fourth haplotype (Fig. 4).

Discussion

We could not find any consistent differences in sequences or haplotypes correlated to differences in morphotype, and thus conclude that the verrucosa- and the rufibranchialis forms are conspecific. In addition, COI haplotype sharing is evidence for interbreeding populations (e.g. Kojima et al. 2001), although we could not deduce whether this interbreeding is contemporary and/or historical. A comparison between COI (mitochondrial, coding) and ITS2 (nuclear, non-coding) results could, however, shed light on this, considering the different modes of inheritance and the coding/noncoding nature of these genes (Simon et al. 1994). King et al. (1999) suggested that lack of congruence between mitochondrial coding and nuclear non-coding genes was due to relatively recent reproductive-isolation events. In this comparison one expects the nuclear non-coding

Fig. 3. TCS haplotype network for the COI dataset, including the outgroup AJ223254; for abbreviations see Table 1. Single and multiple sequences representing one haplotype are enclosed in ovals and boxes, respectively. Haplotypes shared between the verrucosa- and the rufibranchialis forms are enclosed in bold outline boxes. Missing haplotypes are indicated by small circles on the connecting lines.

Table 3. ITS2-5.8S sequence distance matrix; distances expressed as percent difference between two sequences

	rufi1	rufi2	rufi6	verr1	verr2	verr3	verr10	verr12	AY014155
rufi1	-								
rufi2	0.2	-							
rufi6	2.0	2.0	-						
verr1	1.6	1.6	0.2	-					
verr2	2.0	2.0	0.4	0.0	-				
verr3	2.0	2.0	0.4	0.0	0.0	-			
verr10	2.0	2.0	0.4	0.0	0.0	0.0	-		
verr12	1.8	1.8	0.2	0.0	0.2	0.2	0.2	-	57.0
AY014155	57.4	57.6	56.7	56.7	56.8	56.8	56.8	-	

Note that PAUP ignores nucleotide sequence ambiguities, thus ambiguities do not contribute to sequence differences. The matrix includes the outgroup sequence AY014155. For abbreviations see Table 1.

Fig. 4. TCS haplotype network for the 5.8S-ITS2 dataset, including the outgroup AY014155; for abbreviations see Table 1. Single and multiple sequences representing one haplotype are enclosed in ovals and boxes, respectively. Missing haplotypes are indicated by small circles on the connecting lines.
gene to evolve at a faster pace than the mitochondrial coding gene, thus to be able to produce a different grouping than the mitochondrial coding gene, i.e. to produce haplotype groups according to morphotype. In the present study, neither the mitochondrial coding COI nor the nuclear non-coding ITS2 (together with the contiguous 5.8 S) yielded haplotype groups correlated to morphotype (see Figs. 3 and 4). This suggests that interbreeding between the verrucosa- and rufibranchialis forms is contemporary. The previous synonymization of the two corresponding species names (e.g. Løyning 1922;

Odhner 1939; Lemche 1941) is supported and strengthened by the results presented herein.

Acknowledgements

We thank two anonymous referees for constructive comments on the manuscript. We also thank Jussi Evertsen, Alan Kuzirian, Mikael Thollesson, and Christoffer Schander for constructive discussions in the initial phases of this project. RE thanks Jonas Vannar and Patrik Strömberg for diving assistance. This study was financially supported (to PS) by the Swedish Research Council.

References

Clement, M., Posada, D., Crandall, K.A., 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657-1659.
Diekmann, O.E., Bak, R.P.M., Stam, W.T., Olsen, J.L., 2001. Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Mar. Biol. 139, 221-233.
Folmer, O., Blanck, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294-299.
Hertel, L.A., Bayne, C.J., Loker, E.S., 2002. The symbiont Capsaspora owczarzaki, nov. gen. nov. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata, is related to members of the Mesomycetozoea. Int. J. Parasitol. 32, 1183-1191.
Higgins, D.G., Sharp, P.M., 1989. Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5 , 151-153.
King, T.M., Eackles, M.S., Gjetvaj, B., Hoeh, W.R., 1999. Intraspecific phylogeography of Lasmigona subviridis (Bivalvia: Unionidae): conservation implications of range discontinuity. Mol. Ecol. 8, S65-S78.

Kojima, S., Segawa, R., Fijiwara, Y., Fujikura, K., Ohta, S., Hashimoto, J., 2001. Phylogeny of the hydrothermal-ventendemic gastropods Alviniconcha spp. from the western Pacific revealed by mitochondrial DNA sequences. Biol. Bull. 200, 298-304.
Kuzirian, A.M., 1979. Taxonomy and biology of four New England coryphellid nudibranchs (Gastropoda: Opisthobranchia). J. Moll. Stud. 45, 239-261.
Lemche, H., 1941. Gastropoda Opisthobranchiata. Zoology of East Greenland. Meddel. Grönland 121 (7), 1-50.
Løyning, P., 1922. Nudibranchfaunen i Drøbaksundet. Vid. Selsk. Skr. I. Mat-Nat. Klasse 6. Kristiania.
Medina, M., Walsh, P.J., 2000. Molecular systematics of the order Anaspidea based on mitochondrial DNA sequence (12S, 16S and COI). Mol. Phylogenet. Evol. 15, 41-58.
Morse, M.P., 1969. On the feeding of the nudibranch Coryphella verrucosa rufibranchialis, with a discussion of its taxonomy. Nautilus 83, 37-40.
Odhner, N.H., 1907. Northern and Arctic Invertebrates in the Collection of the Swedish State Museum (Riksmuseum) III. Opisthobranchia and Pteropoda. Kungl. Svenska Vetensk. akad. Handl., Ny följd 41.
Odhner, N.H., 1922. Norwegian opisthobranchiate mollusca in the collections of the Zoological Museum of Kristiania. Nyt Mag. Naturvid. 60, 1-47.

Odhner, N.H., 1926. Nudibranchs and lamellariids from the Trondheim fjord. Kongl. Norske Vid. Selsk. Skr. 2, 1-36.
Odhner, N.H., 1939. Opisthobranchiate mollusca from the western and northern coasts of Norway. Kongl. Norske Vid. Selsk. Skr. 1, 1-93.
Oliverio, M., Mariottini, P., 2001. Contrasting morphological and molecular variation in Coralliophila meyendorfii (Muricidae, Coralliophilinae). J. Moll. Stud. 67, 243-246.
Raahauge, P., Kristensen, T.K., 2000. A comparison of Bulinus africanus group species (Planorbidae; Gastropoda) by use of internal transcribed spacer region 1 combined by morphological and anatomical characters. Acta Trop. 75, 85-94.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651-701.
Swofford, D.L., 2003. PAUP* Phylogenetic Analyses Using Parsimony (*and other Methods). Sinauer Associates, Sunderland, MA (Version 4b10).
Thompson, T.E., Brown, G.H., 1976. British opisthobranch molluscs. Synopses Brit. Fauna (N. Ser.) 8, 1-203.

[^0]: *Corresponding author.
 E-mail address: robert@dykbios.se (R. Eriksson).

[^1]: Table 1.

