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Abstract

The lateral eyes of Crustacea and Insecta consist of many single optical units, the ommatidia, that are composed of a
small, strictly determined and evolutionarily conserved set of cells. In contrast, the eyes of Myriapoda (millipedes and
centipedes) are fields of optical units, the lateral ocelli, each of which is composed of up to several hundreds of cells.
For many years these striking differences between the lateral eyes of Crustacea/Insecta versus Myriapoda have puzzled
evolutionary biologists, as the Myriapoda are traditionally considered to be closely related to the Insecta. The
prevailing hypothesis to explain this paradox has been that the myriapod fields of lateral ocelli derive from insect
compound eyes by disintegration of the latter into single ommatidia and subsequent fusion of several ommatidia to
form multicellular ocelli. To provide a fresh view on this problem, we counted and mapped the arrangement of ocelli
during postembryonic development of a diplopod. Furthermore, the arrangement of proliferating cells in the eyes of
another diplopod and two chilopods was monitored by labelling with the mitosis marker bromodeoxyuridine. Our
results confirm that during eye growth in Myriapoda new elements are added to the side of the eye field, which extend
the rows of earlier-generated optical units. This pattern closely resembles that in horseshoe crabs (Chelicerata) and
Trilobita. We conclude that the trilobite, xiphosuran, diplopod and chilopod mechanism of eye growth represents the
ancestral euarthropod mode of visual-system formation, which raises the possibility that the eyes of Diplopoda and
Chilopoda may not be secondarily reconstructed insect eyes.
© 2006 Gesellschaft fiir Biologische Systematik. Published by Elsevier GmbH. All rights reserved.
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et al. 2000; Hafner and Tokarski 1998, 2001) and optic
ganglia (Melzer et al. 1997b; Harzsch and Walossek
2001; Harzsch 2002; Wildt and Harzsch 2002; Sinake-

Introduction

In discussions about the phylogenetic relationships of

Arthropoda, the structure (Paulus 1979, 2000; Spies
1981; Melzer et al. 1997a; Miiller et al. 2003; Bitsch and
Bitsch 2005) and development of the lateral eyes (Melzer
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vitch et al. 2003; Strausfeld 2005) have always played
pivotal roles. Despite this extensive body of literature,
the mechanisms of eye growth have not yet been
explored systematically across the Euarthropoda. In
the present study, we therefore analysed the formation
of new visual units and their integration into the eyes in
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four representatives of the Myriapoda and compared
these mechanisms with those in other Euarthropoda
representing different types of eye architecture.

Limulus polyphemus Linnaeus, 1758 is a representative
of the Chelicerata, in which lateral eyes composed of
several similar optical units, the ommatidia, are still
present (reviewed by Fahrenbach 1975). Each ommati-
dium has a corneal lens and is composed of a variable
number of more than 300 cells. Other Chelicerata have
varying numbers of lateral single eyes that have been
suggested as derived by modification from lateral
facetted eyes (Paulus 1979; Schliwa and Fleissner 1980;
Spreitzer and Melzer 2003). Most Progoneata and
Chilopoda (Myriapoda) have lateral eyes composed of
several similar subunits generally named lateral ocelli
(that will be termed ‘ocellar ommatidia” in the
following), but in many aspects the architecture of these
subunits is different from that in L. polyphemus (Paulus
1979, 2000; Miiller et al. 2003; Miiller and Meyer-
Rochow 2005). The ocellar ommatidia of most Diplo-
poda are composed of a high and varying number of
contributing cells, their rhabdomeres are usually made
up of more than 60 retinula cells (Spies 1981; Paulus
2000). All chilopod eyes have in common a dual-type
retinula that is arranged in either two or numerous
sometimes disintegrated horizontal layers (Bdhr 1974;
Paulus 1979; Miiller et al. 2003; Miller and Meyer-
Rochow 2006a,b; Miiller and Rosenberg 2006).

Eye design in Scutigeromorpha (Notostigmophora),
which presumably are basal representatives of the
Chilopoda (Edgecombe 2004; Edgecombe and Giribet
2004) in many respects is different from that in other
Chilopoda (Bédhr 1974; Paulus 1979). Scutigeromorpha
have ommatidia composed of between 39 and 46 cells,
and a crystalline cone built by four or (rarely) five cone
cells (Miiller et al. 2003). The principal cell types in the
eyes of Scutigeromorpha, in particular the crystalline
cone cells, can be homologised with those in Hexapoda
and Crustacea (Miiller et al. 2003). However, the ocellar
ommatidia of pleurostigmophoran centipedes (including
Lithobiomorpha and Scolopendromorpha) lack crystal-
line cones and other scutigeromorph features such as
interommatidial pigment cells and primary pigment
cells. They may be encircled by external pigment cells
(discussed in Paulus 2000; Miiller and Meyer-Rochow
2006a,b; Miiller and Rosenberg 2006). A survey of eye
growth patterns in diplopods has been given in Enghoff
et al. (1993), indicating a moult-related row growth.

The Insecta and Crustacea have compound eyes with
many similarly structured ommatidia. However, con-
trary to the Chelicerata and Myriapoda, their optical
units are composed of a small, strictly determined and
evolutionarily conserved set of cells. Recent data suggest
that many aspects of retinal pattern formation, omma-
tidial differentiation and optic stem cell proliferation are
similar between representatives of Crustacea and Insecta

(Harzsch et al. 1999; Melzer et al. 2000; Hafner and
Tokarski 1998, 2001; Harzsch and Walossek 2001;
Harzsch 2002; Wildt and Harzsch 2002). Melzer et al.
(2000), Paulus (2000), Dohle (2001) and Richter (2002)
suggested that in the ground pattern of these two taxa
each ommatidium is composed of a small, constant
number of cells: two corneagenous cells, four crystalline
cone cells, eight retinula cells, and several pigment cells.
This fixed architecture is supposed to be a synapomor-
phy of a taxon formed comprising these two groups for
which Dohle (2001) proposed the name “Tetraconata”
in reference to the tetrapartite crystalline cone. We will
therefore refer to the ommatidia of Crustacea and
Hexapoda as ‘“‘tetraconate ommatidia” in the following.

Paulus (1986, 2000) has suggested an evolutionary
scenario to explain the relationships of these different
eye types among the Euarthropoda. According to his
model, compound eyes with ommatidia like those of
recent Crustacea, Hexapoda or Scutigeromorpha may
represent the ancestral eye type of Mandibulata. From
this plesiomorphic character state, the compound eyes
disintegrated into single ommatidia. Then, by fusion of
several ommatidia and/or increase of cell numbers in the
ommatidia, multicellular ocelli (fusion stemmata) like
those of Progoneata and Chilopoda emerged. Harzsch
et al. (2005) recently challenged this hypothesis and
instead suggested an evolutionary scenario following the
opposite direction. They proposed the multicellular eye
subunits of Chelicerata/Xiphosura with their high and
variable cell number to be plesiomorphic for the
Euarthropoda. Some taxa of Progoneata and Chilopoda
(genera Scutigera, Polyxenus) have reduced the number
of cells of which each eye subunit is composed, and some
cell types occur in constant numbers. In the new model
of Harzsch et al. (2005), these taxa represent an
intermediate on the path towards the Tetraconata in
which the eye subunits have a fixed architecture with a
relatively low, constant cell number.

Despite the potential of developmental studies to add
new aspects to this controversy, information on eye
development is not available for the Chilopoda. How-
ever, in the Progoneata, eye growth has been analysed in
correlation with growth of the animals (e.g. Vachon
1947; Saudray 1952; Sahli 1955; Peitsalmi and Pajunen
1991, 1992). For a long time, myriapodologists found it
hard to determine the age and/or developmental stage of
an individual diplopod when looking at the number or
the way of accretion of new trunk diplosegments.
Exploring diplopod eye development has shown that
the actual number of moults can be determined by
looking at the number of ocellus rows, as with each
moult a new row of ocellar ommatidia or a single new
ommatidium is added to the eye field laid down earlier in
development (reviewed in Blower 1985; Hopkin and
Read 1992; Enghoff et al. 1993). One would expect that
some residual evidence of the evolutionary pathway
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suggested by Paulus (1986) should be revealed by the
developmental program by which the generation of the
eyes in recent Myriapoda is governed. However, such
evidence is lacking so far. In order to gain new insight
into the evolutionary relationship of myriapod eyes with
respect to the competing scenarios, the present study
explores eye growth in four representatives of the
Myriapoda: the two diplopods Cylindroiulus truncorum
(Silvestri, 1896) and Archispirostreptus gigas (Peters,
1855), and the two chilopods Scolopendra oraniensis
Lucas, 1846 and Scutigera coleoptrata (Linnaeus, 1758).
Specifically, we mapped the pattern in which new visual
units are added to the existing eye field. Furthermore,
the arrangement of proliferating cells in the developing
eyes was monitored by in vivo labelling with the mitosis
marker bromodeoxyuridine (BrdU) (Harzsch et al. 1999;
Harzsch and Walossek 2001; Wildt and Harzsch 2002).

Material and methods
Animals

Juvenile and adult centipedes of the species
S. oraniensis Lucas, 1846 (Chilopoda, Scolopendromor-
pha) and S. coleoptrata (Linnaeus, 1758) (Chilopoda,
Notostigmophora) were collected on the Balearic Island
of Ibiza, Spain. Millipedes A. gigas (Peters, 1855)
(Diplopoda, Spirostreptida, Spirostreptidae) were pur-
chased from a commercial supplier (B.T.B.E., Born To
Be Eaten, Schniirpflingen, Germany; <http://
www.btbe.de »). Numerous individuals of C. truncorum
(Silvestri, 1896) (Diplopoda, Julidae) representing var-
ious stages and moults were collected from a compost
heap in the garden of the Zoological Institute in
Munich, Germany. On 60 animals of this species, the
number of ocellar ommatidia and the shape of the eye
field were examined and/or photographed, either under
a Wild stereo microscope or a Zeiss Axioplan photo-
microscope with brightfield illumination.

BrdU labelling

Proliferation of cells was monitored by in vivo
labelling with the s-phase specific mitosis marker BrdU
(Harzsch et al. 1999). Because we assumed eye growth to
proceed rather slowly in the juvenile animals we
provided several pulses of BrdU labelling reagent during
a period of 2-3 months. On December 10th 2004,
juvenile centipedes S. oraniensis and millipedes 4. gigas
were anaesthetized with CO,, subsequently cooled to
4°C, then injected with 20pul BrdU labelling reagent
(Amersham, Cell Proliferation Kit RPN 20) using a
0.4 mm syringe. The animals received a second pulse of
BrdU into the haemocoel on January 18th 2005. All

attempts at injecting centipedes S. coleoptrata resulted in
the death of the specimens. On January 20th (for S.
coleoptrata), January 25th (A. gigas), and March 3rd (S.
oraniensis), respectively, the animals were anaesthetized
with CO, and subsequently cooled to 4 °C. Their heads
were cut off and incubated in BrdU diluted in locust
ringer pH 6.8 (140 mM NaCl, 10 mM KCI, 2mM CaCl,,
2mM MgCl, 5mM NaHCOj; and 5SmM NaH,PO,) to a
concentration of 0.2mg/ml for 12h at 18°C. Whole
mounts of the dissected eyes were processed immuno-
histochemically as described by Harzsch et al. (1999).
Briefly, specimens were fixed overnight in 4% parafor-
maldehyde, then washed in phosphate-buffered saline
(pH 7.4). Incubating in commercial bleach for 60s
degraded the photopigment. Specimens were then
incubated for 2.5h in a primary anti-BrdU mouse
(1:100, Amersham, Cell Proliferation Kit RPN 20), and
afterwards for 1h in a peroxidase-coupled goat anti-
mouse secondary antibody (1:70). The enzyme label was
visualized by reacting with diaminobenzidine and
peroxide (Harzsch and Dawirs 1994). The whole mounts
were dehydrated, mounted and viewed with a Zeiss
Axioskop fitted with a CCD-1300B digital camera
(Vosskiihler GmbH). Digital images were processed
with the Lucia 4.82 software package (Laboratory
Imaging Ltd.) and Photoshop Elements (Adobe). Stacks
of images taken from the same sample at different focal
levels were either transformed into sharp 2D photo-
montages or into blue—green coded 3D reconstructions
by the Lucia software.

Results

Mapping growth of the eye field in the diplopod
C. truncorum

The lateral head capsule with the eye field was
examined in 60 juvenile C. truncorum representing
various developmental stages (Fig. 1). Fig. 2 summarizes
counts of ocellar ommatidia and mappings of their
arrangement, as well as the eye-field orientation. In this
figure the specimens are arranged in ascending order
according to the number of ocellar ommatidia (units) in
their eye fields. In addition, the moult stage of the
studied specimens is indicated according to Enghoff et
al. (1993). Furthermore, the number of individuals (n)
with each observed pattern is indicated. The eye fields of
the 60 individuals examined were composed of 1-39
units that were arranged in 1-9 rows of ocellar
ommatidia (RO, ‘rangée d’ocelles’). In those individuals
with 3—7 RO, different unit numbers and arrangements
were recorded. For example, the fourteen 7-RO speci-
mens fell into four different classes with 25-28
ommatidia (Fig. 2). The eye fields of the 60 specimens
screened fell into 17 different classes.
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Fig. 1. Light micrographs of lateral head capsule with eye field
of juvenile Cylindroiulus truncorum in various developmental
stages, respectively, comprising one (A), five (B), and ten (C)
ocellar ommatidia; (D) overview. Abbreviations: Aa = first
antennal article, Oc = ocellus, Pi = pigmented area from
which new ocelli develop, T = tentorium. Scale bars: 100 pm.

23

From our counts it is possible to gain insight into how
the eye field grows. Correlated to the moults are waves of
differentiation of new rows of ocelli, beginning with
individuals that possess only a single ocellus. Successively,
one finds 2 RO in the second stage, 3 RO in the third, and
so on, until the maximum of 7 rows is attained at stage
seven. The number of ocelli added within each row shows
some individual variation that brings about different
subtypes of the RO classes; e.g., in the 3RO eye fields
one finds individuals with either 2 or 3 ocelli in the newest
row, and in 4-RO eye fields the newest row is composed of
either 3 or 4 ocelli (for details and the other RO classes see
Fig. 2). One can conclude that in C. truncorum there is a
moult-related regular accretion of new rows of ocelli at the
antero-dorsal edge of the eye field, a feature that closely
fits the pattern of eye growth in other diplopods (Enghoff
et al. 1993). Furthermore, we observed that in the IRO1 to
4RO individuals the oldest ocellar ommatidium, i.e., the
single unit found in the 1-unit specimens, is slightly larger
than the units that form later, and is located at the ventro-
caudalmost tip of the eye field.

Analysis of eye growth in the diplopod A. gigas by
BrdU labelling

In order to obtain additional insight into where the
new cellular material of the new units that are added to
the eye field is generated, we monitored neurogenesis
applying the proliferation marker BrdU. Fig. 3 shows
the eye fields of two exemplary juvenile A. gigas with 36
ocellar ommatidia (arranged in 8 rows, with row eight

number of
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Fig. 2. Summary of ocellar counts and mappings of their arrangement, and eye-field orientation in 60 juveniles of Cylindroiulus
truncorum in various stages of development; specimens arranged in ascending order according to number of ocellar ommatidia
(units) in eye fields; » = number of individuals with respective pattern; grey circles indicate units that are new compared to the
previous pattern. Eye fields were composed of 1-39 units arranged in 1-9 ocellar rows (RO); observed unit numbers were 1, 3, 5, 6, 9,
10, 14, 15, 18, 20, 21, 25, 26, 27, 28, 35, and 39, so that eye fields fell into 17 classes. Moult stage (1-9) for each RO type given

according to Enghoff et al. (1993).
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comprising the newly emerging units), viewed with
Nomarski interference contrast (Figs. 3A and C) to
show the surface of the eye field, and with brightfield
illumination (Figs. 3B and D) to show the BrdU-labelled
nuclei. An older animal is shown in Fig. 3E to provide
the orientation for figures 3A—D. As in C. truncorum, in
addition to being organized in 8 rows, the eye field at
this stage can be viewed as comprising a central file with
4 mature ocellar ommatidia which on both sides is
flanked by a file composed of 3 mature ocellar
ommatidia but in addition a protommatidium (circle;
black lines connect the units of one file). Towards the
sides, next there is a file with 3 units, then a file with two
units plus a protommatidium, etc. (note that in
Figs. 3A-D not the complete eye fields are shown).
With brightfield optics, the protommatidia appear as
clusters of dozens of black-labelled nuclei (circles in
Figs. 3B and D), which at a higher magnification all
appear to be of a similar size (Fig. 3F). As in C.
truncorum, the new row of protommatidia is added to
the eye field from the side where the base of the antenna
adjoins the eye. In addition to the protommatidia, BrdU
labelling reveals that every mature ocellar ommatidium
at its base is surrounded by a broad rim of mitotic
nuclei, suggesting a persistent intercalary growth.
Scanning the whole mounts at different focal planes
and comparison with published information on the
architecture of diplopod eyes (Paulus 1979; Spies 1981)
revealed that this rim of labelled cells wraps around the
base of the cornea laterally and proximally, suggesting
these proliferating cells to be located within the layer of
retinula cells. This is supported by analysis of omma-
tidia at the side of the eye field, which are slightly tilted,
thus providing a side view (asterisks in Fig. 3F).

BrdU labelling in the chilopod S. oraniensis

The lateral eyes of S. oraniensis consist of only 4 ocellar
ommatidia on each side of the head (Figs. 4A and B; only
3 units shown in B). Each optical element is composed of a
corneal lens formed by 2302200 cells, 560-1020 distal and
70-130 proximal retinula cells, 150-250 sheath cells, as

well as numerous external pigment cells surrounding the
entire eye cup (Miiller and Meyer-Rochow 2006a). BrdU
labelling in adult S. oraniensis, in which all 4 ocellar
ommatidia are already present, revealed mitotic cells to be
present within all parts of the unit, suggesting a persistent
intercalary growth (Figs. 4C and D). The broad arrows in
Fig. 4C mark spindle-shaped nuclei that closely resemble
those of the corneagenous cells (Miiller and Meyer-
Rochow 2006a); the narrow arrows point to labelled
nuclei belonging to the distalmost layers in the horizontally
stacked system of distal retinula cells (note that the
proximal and part of the distal rhabdom were torn off in
this preparation). The narrow arrows in Fig. 4D point to
mitotic nuclei located within the layer of the distal retinula
cells that surrounds the distal rhabdom, an arrangement
that resembles the localization of proliferating cells within
the layer of retinula cells in the diplopod A. gigas as
outlined above. Proliferating cells are also present in the
layer of proximal retinula cells (data not shown).

BrdU labelling in the chilopod S. coleoptrata

In contrast to diplopod eyes, all ommatidia in the
lateral eye of S. coleoptrata are of fairly similar size
(Fig. 4E). These ommatidia are composed of a fixed cell
array that shows little variation in numbers (Miiller et
al. 2003). BrdU labelling reveals that the growing eyes
are entirely surrounded by a zone of mitotic cells
(Figs. 4F—H). This proliferation zone is located laterally
along the circumference of the eye and is the site where
new optical units are generated. Analysing this
proliferation zone with 3D images revealed that the
proliferating cells seem to be clustered in a pattern
that prefigures the outline of the protommatidia
(Fig. 4H). Few or no labelled profiles where observed
in the middle of the eye field where mature ommatidia
are located.

Discussion

Growth of the lateral eyes in Diplopoda is similar to
Xiphosura and Trilobita, and represents the plesio-

Fig. 3. Two examples of juvenile eye fields in the diplopod Archispirostreptus gigas, with 35 units labelled with the proliferation
marker bromodeoxyuridine (BrdU); for orientation of images compare to adult specimen in Fig. E; BA = base of antenna. (A) and
(C) Two different specimens viewed with Nomarski interference contrast, showing parts of surface of eye field (montages from
stacks of 10 focal planes each); black lines connect ocellar ommatidia of one file; central file (CF) with four mature units flanked on
both sides by a file composed of three mature ocellar ommatidia plus a protommatidium (circle; for further explanation see text). (B)
and (D) Specimens as in (A) and (C) viewed with brightfield illumination (montages from stacks of 10 focal planes each), showing
BrdU-labelled nuclei; circles identify protommatidia which appear as clusters of numerous black labelled nuclei; in both specimens,
a new row of protommatidia added to eye field from side where base of antenna adjoins eye; furthermore, all existing units within
eye field surrounded by distinct rim of mitotic cells. (F) Higher magnification of (B) (montage compiled from stack of 5 focal
planes); circles identify row of protommatidia being added to side of eye field; at this stage, protommatidia are clusters of mitotic
nuclei all of which appear to be of uniform size; note mitotic cells which surround base of existing ocellar ommatidia and are located
within layer of retinula cells; asterisks identify ommatidia at side of eye field that are slightly tilted, thus providing a side view.
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morphic euarthropod condition. It has been established
firmly that during growth of the eyes of Trilobita new
elements were formed in a generative zone that was
arranged along the eye margin (Zhang and Clarkson
1990; Clarkson and Zhang 1991). From this gene-
rative zone, new lenses were added to the growing eye
(Fig. 5A). For the xiphosuran Limulus polyphemus
(Chelicerata) it has been suggested that the eyes grow
by the addition of new elements at the anterior margin
(Meadors et al. 2001; Smith et al. 2002). Confirmation
for these data comes from recent BrdU labelling
experiments in juvenile L. polyphemus (Figs. 5B and C;
Harzsch et al. 2006). The pattern of eye growth in
Diplopoda reported on here closely corresponds to that
known from other diplopods in that new elements are
added to the side of the eye field from an anteriorly/
dorsally located proliferation zone, thus elongating the
rows of earlier-generated optical units (Blower 1985;
Peitsalmi and Pajunen 1991, 1992; Hopkin and Read
1992; Enghoff et al. 1993). Because this ‘row-by-row’
growth in Diplopoda closely corresponds to Xiphosura
and Trilobita (Zhang and Clarkson 1990; Clarkson and
Zhang 1991, Meadors et al. 2001; Smith et al. 2002), we
propose that this mechanism represents the plesio-
morphic state in the euarthropod ground pattern of
how the visual system is generated. The gradient
of the stage of differentiation of ocellar ommatidia
within a single new row we observed needs further
examination.

This suggestion is important with regard to the
competing scenarios concerning the evolutionary
relationship of myriapod and insect eyes. According to
the hypothesis of Paulus (1979, 1986, 2000), myriapod
eyes are secondarily reconstructed insect eyes derived by
distinct evolutionary modifications: insect compound
eyes disintegrated into single ommatidia which then
fused again to form the myriapod multicellular ocelli.
Our data do not provide evidence in favour of this
scenario, but rather suggest that the Diplopoda
share the ancestral mechanism of eye growth as is
present in other Euarthropoda. This raises the possibi-
lity that the eyes of Diplopoda may not be modified
insect eyes.

Eye growth in pleurostigmophoran Chilopoda

The eyes of the scolopendromorph S. oraniensis that
we examined comprise only four ocellar ommatidia, a
fact that has been interpreted by many authors as a
derived character state for the Chilopoda. This notion
was based either on the assumption of scutigeromorph
eyes to be ‘pseudo-facetted’ and hence containing
ommatidia not homologous with those of the mandibu-
late type (Paulus 1979, 2000; Spies 1981) or, most
recently, on the suggestion of scutigeromorph ommati-
dia as being plesiomorphic with respect to the Pleur-
ostigmophora (Paulus 1979; Bitsch and Bitsch 2005;
Miiller and Meyer-Rochow 2006a,b; Miiller and Rosen-
berg 2006). Our BrdU experiments suggest that there is a
persistent proliferation within all major cell types of
which the ocellar ommatidia are composed (intercalary
growth), the corneagenous cells and the distal and
proximal retinula cells. We assume that growth of the
single ocellar ommatidia takes place during a long
postembryonic period and perhaps persists as long as
the animals grow and moult. In this respect, the
intercalary eye growth in S. oraniensis resembles the
continuing growth of the single ocellar ommatidia that
we observed in the diplopod S. gigas. For the
lithobiomorph Lithobius forficatus, with a larger eye
field than in S. oraniensis, there is tentative evidence that
new ocellar ommatidia are also generated in consecutive
rows and in addition show an intercalary growth during
subsequent moults (Andersson 1976). Furthermore, the
number of cells contributing to a lithobiomorph
ommatidium is not fixed (discussed in Harzsch et al.
2005) and always above the scutigeromorph level (e.g.,
36—400 retinula cells in Lithobius; Miiller and Rosenberg
2006). We therefore propose that a persistent ontoge-
netic increase in cell numbers of the ocellar ommatidia is
another character in the euarthropod ground pattern.

Eye development in notostigmophoran Chilopoda
and Tetraconata

In Crustacea, the formation of new ommatidia has
been examined by classical histology (Melzer et al. 2000;

Fig. 4. Bromodeoxyuridine(BrdU)-labelled eye structures in chilopods Scolopendra oraniensis (A)—«(D) and Scutigera coleoptrata
(E)-(H); (I) Adult specimen of S. coleoptrata. (A) Lateral eyes of adult, dorsal view. (B) Surface view with Normarski optics
(montage from stack of 12 focal planes), showing three of the four ocellar ommatidia of which the eye consists. (C) Ocellar
ommatidium (colour-coded 3D montage from stack of 15 focal planes; for viewing, use red-blue glasses); eye viewed from inside of
head, proximal and part of distal rhabdom torn off; broad arrows mark spindle-shaped nuclei of developing corneagenous cells,
narrow arrows point to mitotic nuclei located within layer of distal retinula cells that surrounds distal rhabdom. (D) Ocellar
ommatidium next to the one in (C) (colour-coded 3D montage); arrows point to mitotic nuclei located within layer of distal retinula
cells that surrounds distal rhabdom. (E) Lateral eye, surface view (colour-coded 3D montage from stack of 18 focal planes; for
viewing use red—blue glasses); all ommatida of fairly similar size. (F) and (G) Growing eye (photo montages) entirely surrounded by
zone of mitotic cells located laterally along circumference of eye. (H) Proliferation zone viewed from inside of eye (colour-coded 3D
montage from stack of 10 focal planes; for viewing use red—blue glasses); proliferating cells seem clustered in pattern prefiguring

outline of protommatida.
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Fig. 5. (A) Lateral eye of juvenile trilobite, Paladin eichwaldi shunnerensis (modified from Clarkson and Zhang 1991); new elements
are formed in proliferation zone (PZ) arranged along dorsal margin of eye, and new small lenses (arrows) added to growing eye. (B)
and (C) Mitotic cells in developing eyes of a juvenile horseshoe crab, Limulus polyphemus (Chelicerata, Xiphosura), labelled with s-
phase specific proliferation marker bromodeoxyuridin (BrdU; modified from Harzsch et al. (2006)); three clusters of labelled cells
(boxed in B, enlarged in C) label site where new elements are formed which are then added to anterior side of growing eye. (D)
Frontal section of visual system in advanced metanauplius of dinosaur shrimp, Triops longicaudatus (Crustacea, Branchiopoda);
arrow indicates direction in which new tetraconate ommatidia are added to medial rim of developing eye; L = lamina ganglionaris,
M = medulla externa; scale bar = 60 um (modified from Harzsch and Walossek 2001). (E) Dorsal view of metanaupliar visual
system in Triops cancriformis after 4h incubation in proliferation marker BrdU and subsequent immunohistochemical detection;
new cellular material is generated by proliferation zone (black labelled cells) and pushed towards rim of developing eye; scale
bar = 30 pm (modified from Harzsch and Walossek 2001). (F) Mitotic cells in developing visual system of American lobster,
Homarus americanus (Crustacea, Malacostraca), at 25% of embryonic development (4 h incubation in BrdU); new cellular material
is generated in proliferation zone (PZ; black-labelled cells), in transition zone (TZ) it differentiates into protoommatidia (PO;
labelled by network of white lines; colouration of these cells is from their own pigmentation) which are added to rim of developing
eye (modified from Harzsch et al. 1999).

Hafner and Tokarski 1998, 2001) as well as by BrdU
incorporation (Harzsch et al. 1999; Harzsch and
Walossek 2001; Wildt and Harzsch 2002). In accordance
with the principle described for the other euarthropod
taxa, the cellular material that will form the new eye
elements is generated in a proliferation zone along the
rim of the developing eye (Fig. SE). One difference is
that this proliferation zone has the shape of a
continuous band rather than that of a row of distinct
mitotic clusters that mark the location of protommati-
dia, as shown for the Diplopoda. In Crustacea, the new
protommatidia differentiate within the transition zone
next to the proliferation zone (Fig. 5F) and are added
to the side of the retina (Harzsch et al. 1999; Melzer
et al. 2000; Hafner and Tokarski 1998, 2001; Harzsch

and Walossek 2001; Wildt and Harzsch 2002). The
mechanisms of eye development in Drosophila melano-
gaster from an imaginal disc probably do not represent
the plesiomorphic condition within the Hexapoda,
due to the highly derived holometabolous developmen-
tal cycle of this species (discussed in Harzsch et al.
1999, Friedrich and Benzer 2000; Friedrich 2003).
More information can be drawn from comparing eye
formation in Crustacea and other Euarthropoda to
holometabolous insects with external eye imaginal discs
(Friedrich et al. 1996) and to hemimetabolous insects
such as locusts and grasshoppers (Friedrich and Benzer
2000; Friedrich 2003) in which eye growth is strikingly
similar to the crustacean visual system: new cells proli-
ferate at the rim of the developing retina and aggregate
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to form protommatidia which are added to the eye field
(discussed in great detail by Hafner and Tokarski 1998,
2001; Harzsch et al. 1999; Harzsch and Walossek (2001;
Friedrich and Benzer 2000; Friedrich 2003).

As the present BrdU experiments reveal, eye devel-
opment in the scutigeromorph chilopod S. coleoptrata,
in particular the location of the growth zone, closely
resembles the pattern in Tetraconata. This is in good
accordance with the structural similarities of scutigero-
morph and tetraconate ommatidia, specifically the
presence of a four cone cells (Miiller et al. 2003). Hence,
we can now draw a direct evolutionary line from the
proliferation zone in Trilobita, Xiphosura and Diplo-
poda (generation of ocellar ommatidia) to the prolifera-
tion zone in Scutigeromorpha, Insecta and Crustacea
(generation of tetraconate ommatidia). Whereas the eyes
of Scutigeromorpha were previously considered as
secondarily reconstructed (Paulus 2000; see also review
by Bitsch and Bitsch 2005), we take this developmental
evidence as supporting the view held by Miiller et al.
(2003), that their eyes are true compound eyes and
closely related to the eyes of Insecta and Crustacea. The
fact that eye growth in Tetraconata and Scutigeromor-
pha conforms to a common pattern contradicts the
traditional hypothesis (reviewed by Bitsch and Bitsch
2005) that the eyes of Scutigeromorpha are derived by
modification from insect eyes.

Evolution of eye design within the Mandibulata

The similarities in eye development and structure
between Scutigeromorpha and Tetraconata have a
distinct impact on our understanding of eye evolution
in Mandibulata. The Scutigeromorpha are traditionally
considered as the most basal chilopod taxon, and as the
sister group to the Pleurostigmophora which comprise
more derived groups such as the Lithobiomorpha and
Scolopendromorpha. This assumed sister-group rela-
tionship has been confirmed by recent cladistic analyses
combining morphological and molecular data (Edge-
combe 2004; Edgecombe and Giribet 2004; Giribet and
Edgecombe 2006). If we accept this phylogenetic
concept, there are two main lines of explaining the
evolution of eye design in the ancestral lineage of the
Mandibulata:

(1) Our preferred hypothesis is that the tetraconate
ommatidium of Scutigeromorpha, with a constancy
of many but not yet all cell types, not only represents
the ancestral type for the Chilopoda, but also closely
resembles the ancestral eye in the ground pattern of
Mandibulata. In the Diplopoda and the pleurostig-
mophoran Chilopoda the developmental program
then switched back to the plesiomorphic mode of
generating ocellar ommatidia, a phenomenon called
cryptotypism or ‘“‘switchback evolution” (Oakley

2003). Hence, the eyes of the Lithobiomorpha and
Scolopendromorpha are strongly modified ommati-
dia of the scutigeromorph type. In this scenario, the
full constancy of retinal cell numbers (as opposed to
not yet fully fixed cell numbers) has to be added to
the list of autapomorphies defining the Tetraconata
(Crustacea + Hexapoda).

(2) Alternatively, the constant development of a fixed
set of cells composing an ommatidium (two cornea-
genous cells, four crystalline cone cells and eight
retinula cells) already is part of the ground pattern of
Mandibulata. This character is thus retained in the
ommatidia of crustaceans and insects as symplesio-
morphies. In this scenario, the varying numbers of
the interommatidial pigment cells, corneagenous
cells and distal retinula cells in scutigeromorph
ommatidia (Miller et al. 2003) would result from
an intermediate cryptotypism. The intercalary
growth of ocellar ommatidia in Diplopoda and
pleurostigmophoran Chilopoda would be the out-
come of convergent switchback evolution.

Conclusions

Our results show that all Euarthropoda share a
similar basic mode of eye growth: a proliferation zone
generates new elements, which are added to the side of
the eye field. Trilobita and Xiphosura have retained the
plesiomorphic developmental mode from the euarthro-
pod ground pattern in that their proliferation zone
generates new rows of ocellar ommatidia which keep on
growing continuously (intercalary growth). Scutigero-
morpha, Insecta and Crustacea derive from this pattern
in that their proliferation zone generates tetraconate
ommatidia composed of a fixed cell array with a
restricted cell number. In our view, the most
parsimonious way to explain eye structure and devel-
opment in Diplopoda and Chilopoda other than
Scutigeromorpha is that these organisms, starting from
a tetraconate ommatidium of the Scutigera type, have
returned to the plesiomorphic mode of eye formation as
represented by Trilobita and Xiphosura. These data
provide evidence that myriapod eyes may not be
secondarily reconstructed insect eyes as the prevailing
hypothesis suggests.

Our traditional understanding of euarthropod phylo-
geny, that is, a sister-group relationship of the mono-
phyletic taxa Crustacea and Tracheata (Hexapoda and
Myriapoda) (e.g., Klass and Kristensen 2001; Bitsch and
Bitsch 2004) has been challenged in recent years by
studies in the field of molecular phylogeny. In fact, most
of these reports have not supported the monophyly of
the Tracheata but instead have favoured a close
relationship of Hexapoda and Crustacea (recent con-
tributions, e.g., Shultz and Regier 2000; Friedrich and
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Tautz 2001; Hwang et al. 2001; Pisani et al. 2004;
Mallatt et al. 2004; Hassanin 2006; Mallatt and Giribet,
2006; see also Schram and Koenemann 2004). Contrary
to the view of Bitsch and Bitsch (2005), our findings on
myriapod eye development are in line with a number of
recent contributions that explored the architecture of the
central nervous system with regard to arthropod
phylogeny (‘neurophylogeny’; e.g., Strausfeld 1998;
Harzsch 2003, 2004; Fahrbach 2004; Fanenbruck et al.
2004; Harzsch et al. 2005; Loesel 2005; Strausfeld 2005;
Harzsch 2006) in that they are compatible with or rather
strongly support a sister-group relationship of Crusta-
cea and Hexapoda, or even a position of Hexapoda
within Crustacea.
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Note added in proof

While this paper was in the press a new contribution
was published that reviews comparative aspects of visual
system formation in Euarthropoda: Harzsch, S., Hafner,
G., 2006. Evolution of eye development in arthropods:
phylogenetic implications. Arthropod Struct. Dev. 35,
319-340.
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