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Abstract

The feeding behaviour of insects is a difficult ecological interaction to study. To date, entomologists have used
biochemical and molecular techniques to identify the meals of predatory insects. We present here a molecular approach
to identifying the DNA of plant species in the insect gut using the ribulose bisphosphate carboxylase gene large subunit
(rbcL). A reference collection of 23 plant species from the southern Jordan Valley, Israel, was genetically characterized
and employed. Insects belonging to eight different families were collected in the field along with the plants upon which
they were found. After collection and prior to analysis, these insects were isolated on the plants they were found upon
in the laboratory. This was to ensure that the insects had only one plant meal in their gut, as multiple plant meals
would require additional techniques like cloning. A blind study was performed, genetically confirming plant DNA to
species level from the processed gut contents of the insects. All reference plant species could be differentiated using a
157 bp long fragment of the rbcL gene. Plant DNA was identifiable, and the meal of the respective insect was
accurately determined in each case. Analyses using experimentally fed crickets, Gryllodes hebraeus, determined that
plant DNA was still detectable by PCR up to 12 h post-ingestion. This research proposes the application of molecular
techniques for the identification of herbivorous insect feeding behaviour to increase understanding of plant–insect
interactions.
r 2007 Gesellschaft für Biologische Systematik. Published by Elsevier GmbH. All rights reserved.
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Introduction

More than half of all known insects feed upon plants
and still more are associated with plants in one way or
another (May 1988). Plants play an integral role in
insect life cycles and are used by insects as sites for
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feeding, mating, egg-laying, and/or refuge. Some insects
use one plant species for all activities, but it is more
common for insects to use different plants for different
activities, producing complex patterns of activity that
confound the accurate identification of insect–plant
interactions (Sandholm and Price 1962; Prokopy 1976;
Prokopy et al. 1984; May 1988; Mogi and Miyagi 1989).
Explorations of insect–plant interactions are multi-
disciplinary in nature, incorporating numerous techni-
ques and encompassing aspects of many fields of study,
including botany, entomology, ecology, behavioural
studies, physiology, and biochemistry (Ehrlich and
Raven 1964; Eastop 1979; Cates 1980; Hendrix 1980;
Belsky 1986).

The feeding behaviour of insects has been a difficult
ecological interaction to study. Previous studies have
not provided enough accurate details of food sources
and feeding habits of herbivorous insects that would
allow a full understanding of their complex ecological
interactions, for the reasons stated below. First, field
studies based on observations of insects on plants
cannot specifically identify the interaction which is
occurring between the insect and the plant. Some of
these studies of insects on plants have determined that
the insects are indeed feeding (Sandholm and Price 1962;
Basset 1992), but without further accurate analysis it is
difficult to determine whether the insect is mono- or
polyphagous. Second, biochemical and histological
studies of plant content within the gut of insects (Moore
et al. 1987; Schlein and Muller 1995; Johnson and
Nicolson 2001), as with field observations, cannot
accurately and specifically identify the plant from which
the insect fed, nor when the insect fed. Other studies
(Abdel-Malek and Baldwin 1961; Akey et al. 1991) have
involved analysis of plant material that has been force
fed to insects. Obviously, this may not indicate the
preferred plant that the insect may choose to feed upon.

The direct analysis of plant material within the insect
gut is an accurate approach to identifying feeding
behaviours. There are many techniques available with
which to study the gut contents of insects. The simplest
methods involve microscopic analysis of the insect gut
post-feeding. In some insect species, fed on flowers or
nectar, pollen was found in the gut (Johnson and
Nicolson 2001), signifying that the insect has directly fed
upon plant material. Pollen morphology is species-
specific, and can be used to identify the plants that the
insect has consumed. In most insect species, however,
the identification of plant remains is more complex,
requiring dissections and stains, dyes or biochemical
techniques (Schlein and Jacobson 1994; Schlein and
Muller 1995).

The development of the polymerase chain reaction
(PCR) and DNA sequencing, which can be used on
minuscule amounts of sample, have resulted in greater
sensitivity and specificity which can be especially useful
when studying the feeding habits of insects. In fact, these
techniques have been applied to the identification of the
gut contents of numerous predatory insect species (Chen
et al. 2000; Symondson 2002; Augusti et al. 2003; Juen
and Traugott 2005) or to identify the blood meal in
some bloodsucking arthropods (Tobolewski et al. 1992;
Gokool et al. 1993; Augusti et al. 1999b, 2003; Kreike
and Kampfer 1999; Zaidi et al. 1999; Chen et al.
2000; Chow-Shaffer et al. 2000; Hoogendoorn and
Heimpel 2001).

It is also important to note that, although it has been
demonstrated that insect–prey DNA was identifiable in
the guts of different predatory insects for up to 32 h
(Augusti et al. 1999a, b 2000; Chen et al. 2000), the
degradation of the plant DNA through digestion or
other processes in certain insects may be much more
rapid and may impede molecular analyses. This
phenomenon should be assessed for each species of
insect under study.

In this pilot study, we addressed the following
questions by analyzing a small region (157 bp) of the
plant chloroplast gene rbcL by PCR and DNA
sequencing. (1) Could the plant meal in the gut of
insects be reliably and accurately detected by PCR?
(2) Could DNA sequencing of the PCR product identify
the species of plant on which the insect fed? (3) Is there
any difference in the sensitivity of detection from insects
of various sizes? (4) Is there any difference in the
sensitivity of detection due to the effects of time since
feeding?
Material and methods

Study area

The plants and insects were collected in the southern
Jordan Valley, Israel, at an altitude of approximately
�350m, in the spring of 2002. The region belongs to the
Saharo-Arabian phyto-geographical zone of desert
vegetation, which spreads from the Sahara Desert to
Iran (Zohary 1973). The climate here consists of a very
short rainy season in winter and an extremely dry and
hot summer. This site hosts a rich insect fauna that can
be found on a limited number of plant species.

Insect collection

Representatives of several insect groups were caught
on plants (Table 1), and were transferred in groups of
about 20 specimens into square plexiglass cages of
30� 30 cm, with a piece of the plant they were collected
on. Different species were transported to the lab
separately, within 1 h at 4 1C. Insectary conditions were
2671 1C, 60% relative humidity, and a photoperiod of
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Table 1. List of insect species and their respective plant food

sources

Insects Plants

Species (family) Common

name

Species (family)

Ocnogyna loewii

(Arctiidae)

Caterpillar Emex spinosa

(Polygonaceae)

Isophya savignyi

(Tettigonidae)

Grasshopper Malva nicaeensis

(Malvaceae)

Anacridium aegyptium

(Acrididae)

Locust Onopordum

cynarocephalum

(Asteraceae)

Larinus onopordi

(Curculionidae)

Beetle Onopordum

cynarocephalum

(Asteraceae)

Criptocephalus sinaica

(Chrysomelidae)

Beetle Ochradenus

baccatus

(Resedaceae)

Myzus persicae

(Aphididae)

Aphid Pergularia

tomentosa

(Asclepiadaceae)

Oxyrrhachis versicolor

(Cicadidae)

Cicada Tamarix nilotica

(Tamaricaceae)

Gryllodes hebraeus

(Gryllidae)

Cricket Vitis vinifera

(Vitaceae)
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17:7 light:dark. The insects were maintained for 8 days
and provided with daily foliage of the plant species
associated with their capture. After 8 days, insects were
frozen at �70 1C until further use. It should be noted
here that isolating the insects post-capture with the plant
they were collected on reduced the chances of detecting
polyphagy since the gut contents would consist of only
the one species of plant. Multiple plant meals in the gut
would require a modified approach using additional
techniques like cloning. It was also important that
selected insects differed in size in order to assess the
sensitivity of this molecular approach.

Crickets (Gryllodes hebraeus) were collected to verify
the sensitivity of the tests and used as positive controls.
They were starved to remove their original gut content
and experimentally fed with a plant species not locally
found in the collection to control for cross-contamina-
tion. Crickets were chosen as controls because they are
relatively available and have a relatively large body mass
which provides ample gut content for analysis.
Gut preparations of insects for genetic analysis

Previously collected insects were submerged in a
solution of 0.5% hypochlorite with 0.01 ml/ml Triton
X-100 detergent, agitated gently for 1min with forceps,
and then rinsed in double distilled water (ddH20) for
1min. This was to remove any plant debris that may
have been on the outside of the insect, which could
otherwise contaminate the sample during gut dissection
and preparation. They were then placed on a Petridish
sterilized through the flame of a Bunsen burner, and
dissected with No. 5 watchmaker forceps.

The gut was dissected and its contents were analyzed
for plant residue, to ensure the insects had actually fed,
utilizing three techniques: a modified anthrone test,
calcofluor fluorescent staining, and PCR. The extraction
of DNA from the insect gut samples was conducted using
at least one whole insect gut, and at maximum 20mg of
gut content sampled from larger insects, including our
control and experimentally fed G. hebraeus. Thorax
muscles and parts of the mandibles and tarsi of a fed
G. hebraeus were also dissected and used as negative
controls. These negative controls were used to assess
whether the preparation and washing of the insect had
successfully removed plant debris that could contaminate
the surface of the insects and the preparation procedure,
and were also used to ensure that the plant-specific
primers did not amplify the insect DNA.

For the fluorescent staining of cellulose particles,
insect guts were dissected in a fresh solution of 0.05%
calcofluor (Fluorescent brightener 28, White M2R, C.I.
40622 Sigma, St. Louis, MO), mounted on microscope
slides, and covered with cover slips that had been
sterilized through the flame of a Bunsen burner to
eliminate fluorescing particles of paper and cloth
(Schlein and Muller 1995). The preparations were
examined under a phase contrast microscope at a
wavelength of 360–440 nm, with a Wr 2B filter
(Zetopan, Reichert, Vienna) to detect calcofluor-stained
cellulose particles (Kasten 1980).

To detect sucrose as a quick initial test to determine
the presence of plant meals, gut samples were placed in
the wells of a flat-bottomed 24-well tissue culture
microplate and crushed with a sterile glass rod before
adding 300 ml of reaction solution to each well. The
solution contained 0.15% anthrone (Sigma, St. Louis,
MO) (wt/vol) in 71.7% sulphuric acid. Reactions were
examined under a dissecting microscope after incuba-
tion at 25 1C for 60min. In the presence of sucrose the
reaction liquid changed its colour from yellow to blue.

The sensitivity and effect of digestion on the detection
of the plant rbcL genetic material from the gut contents
of G. hebraeus was evaluated. These experiments were
tested on G. hebraeus insects fed on grapes (Vitis

vinifera) ad libitum, sacrificed and frozen in groups of
four, at each time interval with four controls, after 0, 2,
4, 6, 8, 10, and 12 h of starvation. Afterwards, they were
extracted and amplified for the presence of V. vinifera

DNA in their gut. As a negative control, four
G. hebraeus that had been starved for 48 h after feeding
were amplified for the rbcL gene and the amplification
products were qualitatively assessed after gel electro-
phoresis (Figs. 1 and 2).
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Fig. 1. A qualitative representation of PCR detection of the

rbcL gene from insect gut contents at different periods of time

post-ingestion. Lanes 1–8: crickets and the time they were

allowed to digest; lanes 9–12: other insects after 4 h of

digestion. Lane 1: 0h; 2: 2h; 3: 4h; 4: 6h; 5: 8h; 6: 10h; 7:

12h; 8: unfed negative control; 9: caterpillar; 10: grasshopper;

11: aphid; 12: cicada; 13: molecular marker; 14: extraction

negative control; 15: PCR negative control.
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Plant reference collection

Common plants to be used as reference sequences
from the southern Jordan Valley, Israel, were collected
and identified by traditional methods at the Israel
National Herbarium, Givat Ram, Jerusalem, Israel
(Table 2). The samples were dried prior to DNA
extraction.

DNA extraction

The prepared gut samples were placed in a 1.5ml tube
containing 500 ml of guanidine thiocyanate solution
(Boom et al. 1990), vortexed for 1min and incubated
at 56 1C for 5–8 h under gentle agitation. Samples were
incubated at 94 1C for 10min, centrifuged at 12,000 rpm
for 3min, and the supernatant transferred to another
sterile 1.5ml tube. One ml of guanidine thiocyanate
solution and 10 ml of silica bead suspension were added
to the sample supernatant. The tube was mixed for 20 s
and placed on ice for 1 h with agitation every 15min.
The sample was centrifuged at 12,000 rpm for 30 s and
the supernatant was carefully discarded. Next, 500 ml of
washing buffer (2mM Tris–HCl; pH 7.5), 10mM
EDTA (pH 8.0), and 10mM NaCl in a 50% (v/v)
water/ethanol solution (�20 1C) were added, mixed, and
Fig. 2. Tree view representations of significant BLAST matches be

plant reference sequence and GenBank public database sequences. N

onopordi) gut meals were identified as Onopordum cynarocephalum

caterpillar plant meal identified as Emex spinosa. (B) Unknown fro

Unknown from locust and beetle plant meals identified as Onopo

identified as Ochradenus baccatus. (E) Unknown from aphid plant

cicada plant meal identified as Tamarix nilotica. (G) Unknown from
centrifuged for 30 s at 12,000 rpm.The supernatant was
discarded. The wash buffer step was repeated until the
pellet was clean. The silica pellet was then washed with
200 ml absolute ethanol as described above, and allowed
to air dry. DNA was eluted with 100 ml of ddH2O, mixed
for 20 s and incubated at 56 1C for 1 h. The sample was
centrifuged at 12,000 rpm for 3min and the DNA
extract was stored at 4 1C. Negative extraction controls
and standard precautions used to minimise contamina-
tion were employed, including the use of sterile tubes,
plugged tips, ultraviolet (UV) irradiation and 0.5%
hypochlorite solutions.

DNA from reference plants was extracted and
purified according to the guidelines in REDExtract-
N-Amp Plant DNA extraction kit (Sigma). A leaf was
first washed with ddH2O, then sampled using a sterile
hole-punch, and placed in a sterile 1.5ml tube with
100 ml of extraction buffer. This tube was vortexed,
incubated at 95 1C for 10min, and then 100 ml of dilution
solution was added. After briefly vortexing the sample,
it was stored at 4 1C until its use in PCR amplification.
PCR amplification

PCR amplification was performed at the Hebrew
University of Jerusalem, Israel and replicated at the
Paleo-DNA Laboratory at Lakehead University in
Canada. Each reaction (carried out in a 25 or 50 ml
volume) consisted of 5–20 ml of resuspended DNA, 1X
buffer (10mM Tris–HCl pH 8.4 with AmpliTaq Gold
(Invitrogen) or 20mM Tris–HCl pH 8.4 with Platinum
Taq (GIBCO BRL, MD)), 50mM KCl, 2.25mM
MgCl2, 2.5mM of each nucleoside triphosphate
(dNTPs), 0.25 mM of each primer (Table 3), and 1.25
units of polymerase (AmpliTaq Gold or Platinum Taq).
A PCR negative control was routinely used. Samples
were amplified in a DNA thermal cycler (Biometra
UNO-Thermoblock) or a Master Cycler (Eppendorf)
thermal cycler using an initial denaturation of 94 1C for
3min, followed by 45 cycles of 94 1C for 1min, 60 1C for
1min and 72 1C for 2min, followed by a final extension
at 72 1C for 10min.

PCR reactions of plant reference samples were carried
out according to the REDExtract-N-Amp PCR guide-
lines (Sigma): 10 ml of the REDExtract-N-Amp PCR
Ready Mix, 2.5 ml of each primer (0.125 mM), 1.0 ml of
water, and 4.0 ml of REDExtract-N-Amp plant DNA
extract were used. The PCR utilized primers for the rbcL
tween eight unknown insect gut meal sequences against their

ote: both the locust (Anacridium aegyptium) and beetle (Larinus

with identical trees; only one is shown. (A) Unknown from

m grasshopper plant meal identified as Malva nicaeensis. (C)

rdum cynarocephalum. (D) Unknown from beetle plant meal

meal identified as Pergularia tomentosa. (F) Unknown from

cricket plant meal identified as Vitis vinifera.
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Table 2. List of plant species analyzed in this study

Family Species GenBank No.

Chenopodiaceae Suaeda asphaltica AY541059

Suaeda fruticosa AY545876

Suaeda monoica AY545877

Suaeda palaestina AY545897

Anabasis setifera AY545878

Atriplex halimus AY545879

Salsola vermiculata AY545880

Salsola tetrandia AY545881

Asteraceae Onopordum cynarocephalum AY545882

Conyza dioscoridis AY545883

Inula crithmoides AY545884

Asclepiadaceae Pergularia tomentosa AY545885

Ephedraceae Ephedra aphylla AY545886

Fabaceae Alhagi graecorum AY545887

Rhamnaceae Ziziphus spina-christi AY545888

Mimosaceae Prosopis farcta AY545889

Poaceae Phragmites australis AY545890

Poa eigii AY545891

Zygophyllaceae Nitraria retusa AY545892

Polygonaceae Emex spinosa AY545893

Malvaceae Malva nicaeensis AY545894

Resedaceae Ochradenus baccatus AY545895

Tamaricaceae Tamarix nilotica AY545896

Vitaceae Vitis vinifera AY566240

Table 3. The rbcL primers used to characterize plant species

in this study (Poinar et al. 1998)

Name Target region Sequence

rbcL19 rbcL gene 50—AGATTCCGCAGCCAC

TGCAGCCCCTGCTTC—30

rbcLZ1 rbcL gene 50—ATGTCACCACAAAC

AGAGACTAAAGCAAGT—30
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gene (Table 3) that produced an amplicon of 157 bp
(Poinar et al. 1998). A total reaction volume of
20.0 ml was used with standard PCR thermal cycler
parameters, with an initial denaturation of 72 1C for
3min followed by 35 cycles of 94 1C for 1min, 60 1C
for 1min, 72 1C for 2min, and a final extension of 72 1C
for 10min.

Amplification products were separated in a 2.0%
(w/v) agarose gel and stained with ethidium bromide
(prior to manual sequencing) according to standard
procedures; the same products were separated on 6%
polyacrylamide gels (prior to automated sequencing)
and according to the same standard procedures.
Sequencing was carried out by two different methods
to ensure reproducibility of results. Both methods of
sequencing were repeated four times.
DNA sequencing

The PCR product of interest was excised from the gel
and asymmetrically sequenced using both radioactive
manual sequencing (Sequenase Kit, Amersham) and
automated sequencing on an ABI PRISM 3100 capil-
lary-based sequencer. For automated sequencing on the
ABI prism, the Big Dye Terminator Cycle Sequencing
Kit (Applied Biosystems) was used as follows: 3 ml
reaction mix, 0.5 ml forward or reverse primer (concen-
tration according to the manufacturer’s instructions),
1 ml sample (concentration according to the manufac-
turer’s instructions), and 15.5 ml of sterile water.
Thermocycling conditions were as follows: 25 cycles of
denaturation 96 1C for 30 s, annealing 50 1C for 15 s,
extension 60 1C for 4min.

Sequence analysis

Sequences of rbcL were aligned by BioEdit sequence
analysis software using the Smith–Waterman local
alignment algorithm option. The local alignment meth-
od is most often applied to sequence sets that are
relatively small and contain few gaps. To assess whether
a given alignment may be an indication for homology, it
also helps to know how strong an alignment can be
expected from chance alone. For this we used NCBI
GenBank BLASTn (www.ncbi.nih.gov/blast) to deter-
mine % similarity among sequences generated in this
study, and then compared them to those already
available from GenBank (www.ncbi.nih.gov). This
comparison was graphically represented using Tree
View as a BLAST option. Trees were produced in the
rectangular configuration using the neighbour joining
method with a maximum sequence difference of 0.5.
Branch lengths are not shown.

Plant species producing significant BLAST matches to
our own sequences were checked against the Flora of
Israel (Zohary 1966, 1972; online database, beta
versionr 2003–2006 http://flora.huji.ac.il), to determine
their presence or absence in our study area.
Results

PCR and gel electrophoresis

Amplicons consistent in size with the target fragment
of plant rbcL were generated by PCR from all insects
and reference plants tested. There was little or no
observable difference in the recovery of DNA from the
plant meal of insects of different sizes as assessed by gel
electrophoresis. PCR of the smallest insect analyzed,
Myzus persicae, produced viable plant DNA in amounts
quantitatively comparable to the other insects, including

http://www.ncbi.nih.gov/blast
http://www.ncbi.nih.gov
http://flora.huji.ac.il
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the relatively large G. hebraeus controls. There was,
however, an observable decrease through time in the
intensity of rbcL bands from G. hebraeus fed on grapes
(V. vinifera).

Sequencing results: Plant reference collection

Sequences of the rbcL gene fragment were obtained
for all of the plants we collected in the southern Jordan
Valley (Table 2). Replicate sequences of each plant
species were analyzed to confirm polymorphisms.
Sequences of rbcL obtained for the plant reference
collection were unique when compared to each other
(Table 4). Furthermore, a BLAST search of our
reference plants against the many thousands in Gen-
Bank revealed that 23 out of 24 of our sequences were
unique. The exception was Onopordum cynarocephalum,
which was identical to Ainsliaea acerifolia, Piptocarpha

axillaris, and Gerbera jamesonii in the short region of
rbcL. Fortunately, these plants are not found in the
southern Jordan Valley. Interestingly, our sequence of
V. vinifera differed by one transition polymorphism
(C–T) from the GenBank sequence of the same species.

Sequencing results: Insect gut meals

The DNA sequences from insect guts were BLASTed
against the plant reference sequences to make an
identification of the gut meal. In all cases, gut meal
sequences were 100% homologous with a sequence from
the plant reference collection.

To ensure that the rbcL region chosen would be
capable of discriminating many species, gut meal
sequences were also BLASTed against the GenBank
public database (www.ncbi.nih.gov/blast). In all but one
case (V. vinifera), we had been the first to submit
sequence of an rbcL fragment of the plants collected
from the southern Jordan Valley. Likewise, in all but
one case (O. cynarocephalum) the insect gut meal
sequence matched the sequence generated from our
plant reference more closely than any other of the
thousands of sequences publicly available. In cases
where the match was close (98% or 99% identity), the
closely matching plant, checked against the Israeli flora
database, was not found at all in our study area.
Discussion

A selection of insects, consisting of eight families, and
a variety of body masses were collected from the field.
This range of insects was chosen to determine if the
presence of plant meals could be detected from large and
small insects alike. It was found that plant DNA could
be recovered from all of the insects, even the smallest,
with little or no visible difference in DNA yield. This
could be attributed to the PCR plateau effect that after a
certain number of cycles the reaction becomes saturated.

A series of crickets, G. hebraeus, large in comparison
to other insects in this study, were fed and sacrificed in
time intervals of 2 h (from 0 to12 h) to determine the
effect of time on gut content degradation. Many
phytophagous insects feed constantly or at least within
relatively short periods within the same day or night. In
our experiments, plant meals were still detectable 12 h
after ingestion. In most cases this should be enough time
to determine feeding of an insect. However, the amount
of DNA recovered did decrease over this time period, as
one would expect with the digestion and breakdown of
the plant meal. The sensitivity of the PCR detection
system indicates that this type of analytical procedure is
still feasible a number of hours after the insect feeds.
Once the insect is collected it can be sacrificed and stored
for up to 6 months if kept at �70 1C. The rates of
digestion may differ between insects. Therefore, the
detection limits for the insect of study should be
determined before any research commences. This study
did not determine the extent of DNA recovery from
insects more than 12 h after ingestion or from insects
stored for more than 6 months, questions that are worth
being investigated.

BLAST analysis of unidentified gut meal sequences
revealed three important points. First, it is important to
obtain a reference collection of plants from the area
under study, even though this may become relatively
expensive and time consuming, because the plant of
interest may not yet have been sequenced and submitted
to GenBank. This was the case for all of our eight
reference plants. Second, in the case of O. cynarocepha-

lum, the small region of rbcL sequenced here was not
unique in GenBank. In this case, the other BLAST
matches were from plants not in the study area, but
authors of future studies are cautioned about the
possibility of this result. It may be necessary to sequence
additional regions of the gene, or fragments of other
genes, to increase the resolving power of this method.
Third, we discovered that Vitis spp. sequences in
GenBank, including our own, were more polymorphic
compared to the other plants we sequenced in this study.
In fact, species belonging to the genus Vitis appeared in
three separate branches. This was confirmed in replicate
sequences and so is more likely to be the result of
within-species variation rather than a polymerase
generated error. The rbcL fragment studied herein may
then, in some cases, be able to distinguish among allelic
variants of the same species. However, many more
sequences from members of the same species will need to
be generated and analyzed to determine if this is indeed
the case.

One point that deserves attention is how well this
method would potentially operate on polyphagous

http://www.ncbi.nih.gov/blast
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Table 4. Sequence polymorphisms obtained for the rbcL gene from the southern Jordan Valley plant reference collection

Nucleotide position (np) within 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

chloroplast genome of Zea maysa 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7

GenBank Acc. No. X86563 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 2 3 3 3 3 4 4 5 5 5 5 6 6 7 7 7 7 7 7 8 8 8 8 8 0 0 0 1 1 2 2 2 2 2 3 3 3 3

5 6 9 1 2 3 4 5 6 7 8 7 0 3 5 6 5 8 1 4 5 7 0 3 4 5 6 7 8 9 0 1 2 3 4 0 3 6 1 8 0 1 4 8 9 0 1 3 6

Zea maysa T T A T T A A A G C T G T T A A C C C G G G C A A C C A A G G A T A C A C A C G T C G C C G C T A

Chenopodiaceae

Suaeda asphaltica - - - - - - - - - - - A - - - - T T T T - - T - - - - C - A - - - - - - T - - A C T A - - A - - -

Suaeda fruticosa - - - - - C C C - - - A - - - - T T T T - - T - - - - C - A - - - - - - T - - A C T A - - A - - -

Suaeda monoica - - - - - - - - - - A A - - - - T T T T - - T - - - - C - A - - - - - - T - - A C T A - - A - - -

Suaeda palestina - - - - - - - - - - - A - - - - T T T T - - T - - - - C - A - - - - - - T - G A C T A G G A - - -

Anabasis setifera - - - - - - - - - - - A - C - - T T T T - - T - - - - - - A - - - - - - - T - A C T A - - A - C -

Atriplex halimus - - - - - - - - - - - A - C - - T T T T - - T - - - - C T A - - - - - - - - G A C G A - - A - C -

Salsola vermiculata C - - - - - - - - - C A - C - G T T T T - - T - - - - - - A - - - - - - - - G A C T A - - A - C -

Salsola tetranda C - - - - - - - - - C A - C - - T T T T - - T - - - - - - A - - - - - - - - G A C T A - - A - C -

Asteraceae

Onopordum cynarocephalum - - - - C - - - - - - A - C - - T T T T - C T - - - - - - - - - - - - - T - - A C T A - - - - - -

Conyza dioscoridis - - - - A - - G C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C - - - - - G - -

Inula crithmoides - - - - C - - - - - - A - - - - T T T T - A T - - - - - - - - - - - - - T - - A C G C - - - - - -

Asclepiadaceae

Pergularia tomentosa - - - C A - G C - G - A G C - - T T T T - A - - - - A - - A - - - - - - - - - A C - A - - A - - -

Ephedraceae

Ephedra aphylla - - - - A - - G C T - A - C - - T T T T - - T - - - - C T A - - - - - - T - G A C G A - - A - - -

Fabaceae

Alhagi graecorum - - G - C - - - - - - A - - G - T T T T C A T - - - - - - - - - - - - - - - - A C T A - - - - - G

Rhamnaceae

Ziziphus spina-christi - - - - C - - - - - C A - - - - T - T T - C T - - - - - - A - - - - - G T - - A C T A - - - - - G

Mimosaceae

Prosopis farcta - - G - C - - - - - - A - - - - T T T T - C T - - - - - - A - - - - G - - - - A C T A - - - - - -

Poaceae

Phragmites australis A A - - - - - - - - C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C - - - - - G - -

Poa eigii - - - - - C - - - - - A - - - - - - T - - - T - - - - - - - - - - - - - - - - - C T - - - C - G -

Zygophyllaceae

Nitraria retusa - - - - C - - - - - C A - - - - T T T T - A T - - - - - - A - - - - - - - T - A C - A - - A - C -

Polygonaceae

Emex spinosa - - - - C - - - - - - A A C - - T T T T - C T - C - - C - T - - C C A - T - - A C T A - - A G A -

Malvaceae

Malva nicaeensis - - - - C - - - - - - A G - - - T T T T - A T - G T - - - A C - - - - C - - G A C - A - - - - - G

Resedaceae

Ochradenus baccatus C - - - C - - - - - C A - C - - T T T T - - T - - G G - - A - - - - - - - - - A C T A - - A - C -

Tamaricaceae

Tamarix nilotica - - - - C - - - - - - A - C - - T T T T C A - - - - - - - A - - - - - - - - - A C T A - - T - A G

Vitaceae

Vitis vinifera ssp.b - - - - C - - - - - C A - C - - T T T T - A T G - - - - - A C C - - - - T - - A C T A - - A - C -

Vitis vinifera Acc. No. AJ487011 - - - - C - T - - - C A - C - - T T T T - A T G - - - - - A C C - - - - T - * * * * * * * * * * *

*No sequence data for these nucleotide positions.

- Nucleotid identical with that one in the reference sequence.
aReference sequence.
bPlant used for experimental study.
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insect species. Polyphagy has been controlled for in the
present study, but is likely to be commonly encountered
in the field. In this case, gut meal samples should be
cloned to determine the presence of one or more
concomitant sequences. Given the reasonably good
resolving power of this small fragment of rbcL, as
demonstrated by BLAST analysis, we believe that the
cloning approach would be sufficient to detect and
identify multiple plants ingested by polyphagous insects.
We do, however, suggest cloning and sequencing of
additional small regions of rbcL or other genes to
strengthen the DNA identification evidence.

The rbcL fragment sequenced here can serve as an
informative marker in future studies of degraded DNA,
that would provide information about plant species fed
upon by insects, provided there is a reasonably well
represented plant sequence reference collection from the
area under study. Such a small region of the rbcL gene
was chosen because in previous studies it has been shown
that autolytic and hydrolytic degradation processes often
reduce DNA to fragments of 250 bp or less (Pääbo et al.
2004). Also, this same region was previously used to
differentiate plant material in degraded condition (Poinar
et al. 1998). However, we do recommend again that
additional short regions of the rbcL gene be sequenced to
improve taxonomic resolution. In addition, sequencing of
fragments from other more quickly evolving genes may
be required for resolution of closely related plant species.
This study demonstrates the potential use of PCR as a
methodology for the identification of plant material
ingested by insects.
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