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Abstract The diversity of extant calcareous dinophytes
(Thoracosphaeraceae, Dinophyceae) is not fully recorded
at present. The establishment of algal strains collected at
multiple localities is necessary for a rigorous study of taxo-
nomy, morphology and evolution in these unicellular orga-
nisms. We collected sediment and water tow samples from
more than 60 localities in coastal areas of the eastern
Mediterranean Sea and documented 15 morphospecies of
calcareous dinophytes. Internal transcribed spacer (ITS)
barcoding identified numerous species of the Scrippsiella
trochoidea species complex that were genetically distinct,
but indistinguishable in gross morphology (i.e. with the
same tabulation patterns of the motile theca and similar
spiny coccoid stages). We assessed a possible minimal num-
ber of cryptic species using ITS ribotype networks that
indicated the existence of at least 21 species within the
Scrippsiella trochoidea species complex. Species diversity

of calcareous dinophytes appears higher in the Mediterranean
Sea than in other parts of the world’s oceans such as the North
Sea. Our data underline the importance of field work to record
the diversity of calcareous dinophytes and other unicellular
life forms.
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Introduction

Dinophytes are distributed in marine and freshwater environ-
ments worldwide from arctic regions through tropical seas and
constitute a considerable fraction of the plankton. Being primary
producers as well as predators make the dinophytes an impor-
tant component of the global aquatic ecosystem with an impact
on carbon fixation. Together with the Ciliata and Apicomplexa
(0 Sporozoa), the Dinophyceae belong to the Alveolata and are
a well-supported monophyletic group based on both molecular
data and many apomorphies. Morphologically, the dinophytes
exhibit unique traits, such as the coiled transverse flagellum,
associated with a transverse groove termed the ‘cingulum’
(Taylor 1980; Fensome et al. 1999; Rizzo 2003; Leander and
Keeling 2004; Harper et al. 2005). The Thoracosphaeraceae
(Peridiniales) include all dinophytes that produce calcareous
coccoid stages during their life history [important represen-
tative taxa are Pentapharsodinium Indel. & A.R.Loebl.,
Scrippsiella Balech ex A.R.Loebl and Thoracosphaera
Kamptner] as well as some (presumably secondary) non-
calcareous relatives such as Ensiculifera Balech, 1967 and
Pfiesteria Steid. & J.M.Burkh. (Elbrächter et al. 2008).
Approximately 35 extant species of calcareous dinophytes
have been described currently based on morphology
(Zonneveld et al. 2005), plus about 260 fossil species
(Fensome and Williams 2004; Streng et al. 2004).
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The Thoracosphaeraceae are considered a monophyletic
group based on both morphological and molecular data
(Wall and Dale 1968; Janofske 1992; Gottschling et al.
2005a, 2012). They segregate into three lineages, namely
the E/Pe-clade (Ensiculifera/Pentapharsodinium-clade: ma-
rine environments), the T/Pf-clade (Thoracosphaera/
Pfiesteria-clade: marine, brackish and fresh water environ-
ments), and Scrippsiella s.l. (marine and brackish environ-
ments), whereas the latter two clades show a close
relationship. Scrippsiella s.l. segregates, in turn, into a num-
ber of lineages, basically corresponding to established tax-
onomic units (Gottschling et al. 2005b), and include
Pernambugia tuberosa Janofske & Karwath (Karwath
2000), the CAL clade [with Claciodinellum operosum
Deflandre, 1947 (Deflandre 1947)], the LAC clade [with
Scrippsiella lachrymosa Lewis (Lewis 1991)], and the PRE
clade [with S. precaria Montresor & Zingone (Montresor
and Zingone 1988)] as well as the S. trochoidea (F.Stein)
A.R.Loebl. [Loeblich 1976, basionym: Glenodinium tro-
choideum F.Stein (Stein 1883)] species complex (STR-SC;
Montresor et al. 2003; Gottschling et al. 2005b; Gu et al.
2008; Zinssmeister et al. 2011). Phylogeny of the STR-SC is
only partly resolved, but three major assemblages are cur-
rently identified, namely STR1, STR2 and STR3 (i.e. S.
trochoidea cluster 1 through 3). STR3 includes the
“Calciodinellum” levantinum S.Meier, Janofske &
H.Willems (Meier et al. 2002) species group that is not
closely related to the type species of Calciodinellum, C.
operosum.

For manifold reasons, any species concept is challenged for
the unicellular and character-poor dinophytes in general and the
Thoracsophaeraceae in particular (Gottschling et al. 2005b;
Elbrächter et al. 2008). The life history of Thoracosphaeraceae
usually includes at least two different stages, namely the motile
theca and an immotile coccoid stage (described frequently as
‘cyst’). In dinophytes in general, and in calcareous dinophytes
in particular, the morphology of the coccoid stages is diverse,
while the thecate tabulation pattern of cellulose plates is rather
homogeneous (D´Onofrio et al. 1999; Meier et al. 2002;
Gottschling et al. 2005b; Gu et al. 2008). However, many
ecological and checklist studies consider the morphology of
the theca only, although a reliable species determination is not
possible using this approach. The identification of species (fos-
sil and extant) based on morphometrics is thus problematic as
coccoid stages can show high intraspecific variability. For ex-
ample, it has been shown that a single strain of S. trochoidea
reveals morphological differences of coccoid cells under differ-
ent cultivation conditions (Zinssmeister et al. 2011). Moreover,
molecular sequence data have shown the existence of a large
genetic heterogeneity of ribotypes among numerous different
strains with the same gross morphology (‘cryptic species’,
found primarily in the STR-SC: Montresor et al. 2003;
Gottschling et al. 2005b; Gu et al. 2008).

Ribotyping is a fingerprint method analogous to pheno-
typing, genotyping or haplotyping. It uses DNA encoding
ribosomal RNA from organisms or cells to define a specific
sequence. A bifurcate gene tree is not always sufficient to
illustrate all the phylogenetic information present in a mo-
lecular data set (Posada and Crandall 2001), since evidence
for recombination and homoplasy is forced into non-
reticulating tree topologies. Haplo- or ribotype networks
consider such information by allowing loops and including
missing intermediate mutational steps in the graphical illu-
stration. The analysis of networks has been applied success-
fully to the investigation of intraspecific variability and
population genetics. Cryptic species and speciation proces-
ses in plants and animals can also be inferred from network
analyses of mitochondrial (Daniels and Ruhberg 2010),
chloroplast (Lo et al. 2010), and nuclear (Peng et al. 2010)
sequence data. The ribosomal internal transcribed spacer
(ITS) region has been proposed to serve as a species-
specific DNA barcode for dinophytes (Litaker et al. 2007;
Genovesi et al. 2011; Stern et al. 2012) and thus might help
to identify cryptic species as proposed previously
(Gottschling et al. 2005b; Gottschling and Kirsch 2009).
However, it is unclear at present whether a specific ribotype
corresponds to several species, is unique to a single species
or is a polymorphism within a species. If ITS ribotypes
belong to a single reproductive unit (i.e. biological species),
then a continuum between such ribotypes in terms of simi-
larity is to be expected because of intraspecific variability.
This hypothesis would be rejected by distinct classes of
similarity or groups of ribotypes within a network.

With respect to taxonomy and evolution, the investigation
of unicellular algae such as the dinophytes is laborious. It
includes the collection of the organisms in the field and the
establishment of (preferably monoclonal) strains that are held
in culture collections (and which should be at other resear-
chers disposal). Moreover, the investigated material must be
preserved in form of isolates in a DNA bank as well as
microscopic slides, since cultivation is frequently not possible
over long periods of time. A considerable number of species
assigned to the Thoracosphaeraceae are based on fossil types
and have further been found in recent sediments (summarised
in Elbrächter et al. 2008). From some of them [such as C.
operosum and Calcicarpinum bivalvum G.Versteegh
(Versteegh 1993) 0 “Pentapharsodinium” tyrrhenicum
(Balech) Montresor, Zingione & D.Marino (Montresor et al.
1993)] strains could be established, and they have been inve-
stigated morphologically and / or molecularly (Montresor et
al. 1993, 1997; D´Onofrio et al. 1999). However, many such
‘living fossils’ have not been brought into culture yet, despite
their importance for understanding the evolution of the entire
group (Elbrächter et al. 2008).

In this study, we summarise our extensive field trips to
the eastern Mediterranean Sea (Italy, Greece and Crete),
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following the pioneering work of Wall and Dale (1966,
1968) and Montresor et al. (1994). We provide species
records assigned to the Thoracosphaeraceae based on mor-
phology and — where possible — ITS barcoding of estab-
lished strains for the more than 60 localities. We compare
our results with those from a pilot field trip to Scandinavia
(Gottschling and Kirsch 2009) to explore whether species
diversity differs between ecologically distinct areas. Using
ribotype networks, we quantify species number, which may
have importance especially for the STR-SC containing
many cryptic species (Montresor et al. 2003; Gottschling
et al. 2005b; Gu et al. 2008).

Materials and methods

We collected sediment and water tow samples at 22 locali-
ties in Italy (April 2009), 31 localities in Greece (March
2010) and 11 localities on Crete (May 2010; Table S1 in the
electronic supplementary material). Vertical water tow sam-
ples from the ground to the water surface were taken with a
plankton net (mesh size 20 μm). In order to collect many
samples in a short period of time, we used a self-
manufactured, rocket-like bore probe (described in detail
in Gottschling and Kirsch 2009).

With respect to the establishment of cultures from the
samples, we focussed on species that could be assigned to
the Thoracosphaeraceae. The grain size fraction of 20 μm –
75 μm of the sediment samples was supplied with K-
Medium without silicate (Keller et al. 1987) and 35‰
artificial seawater (HW Marinemix Professional:
Wiegandt; Krefeld, Germany) at pH 8.0 – 8.2. Six-well
microplates (Zefa, Munich, Germany) were stored in a cli-
mate chamber Percival I-36VL (CLF PlantClimatics;
Emersacker, Germany) at 18 °C, 80 μmol photons m-2s-1

and a 12:12 h light:dark photoperiod. Coccoid stages as well
as motile thecas (generated from the sediment samples as
well as from the water tow samples) were isolated and were
grown under the conditions specified above. The established
strains are currently held in the culture collections at the
Institute of Historical Geology / Palaeontology (University
of Bremen, Germany) and at the Institute of Systematic
Botany and Mycology (University of Munich), and are
available upon request.

The techniques of light (LM) and scanning electron mi-
croscopy (SEM) were used to identify the strains taxono-
mically. We followed standard protocols (Janofske 2000)
that were basically the same as described in Gottschling et
al. (2012). Briefly, SEM samples were either air-dried or
dehydrated in a graded acetone series and critical point
dried, followed by sputter-coating with platinum. The
Kofoidean system (Taylor 1980; Fensome et al. 1993) was
used for thecate plate designation.

Genomic DNA was extracted from fresh material using
the Nucleo Spin Plant II Kit (Macherey-Nagel, Düren,
Germany). Both ITS regions including the 5.8S rRNAwere
amplified using the primer pair ITS1 5´-GGTGAA
CCTGAGGAAGGAT-3´ (Gottschling et al. 2005a) and
ITS4 5´-TCCTCCGCTTATTGATATGC-3´ (White et al.
1990) and were sequenced directly following standard pro-
tocols. The obtained sequences of cultivated and morpho-
logically determined strains were compared to available
NCBI GenBank entries using Blast search (http://blast.nc-
bi.nlm.nih.gov/Blast.cgi). For ribotype network analyses,
TCS v12.2.0 (Clement et al. 2000) was used following the
developers’ instructions to assess a possible minimal num-
ber of calcareous dinophyte species in specific clades (i.e.
STR1, STR2, STR3 and others). TCS is a software program
(Clement et al. 2000) to estimate gene genealogies including
multifurcations and/or reticulations (i.e. networks). Indels
were AC-coded.

Results

Within 15 sampling days total, we collected sediment and
water tow samples densely at 64 localities in Italy, Greece
and Crete (Fig. 1; only the samples of Italy have been
investigated exhaustively in terms of morphology and
sequencing so far). In total, 63 strains of dinophytes
were established from the collected material, 54 of
which were identified morphologically as belonging to
17 distinct morphospecies of the Thoracosphaeraceae
(Table S1, Fig. 2). Thirty-five strains were sequenced
and the morphological identifications were confirmed
as Calcicarpinum bivalvum [0 “Pentapharsodinium”
tyrrhenicum (Balech) Montresor, Zingone & D.Marino],
Calcigonellum infula Deflandre, 1949 (Deflandre 1949),
Calciodinellum operosum, Scrippsiella bicarinata
Zinssmeister, S.Soehner, S.Meier & Gottschling
(Zinssmeister et al. in press), S. kirschiae Zinssmeister,
S.Soehner, S.Meier & Gottschling (Zinssmeister et al. in
press), S. lachrymosa Lewis, S. precaria Montresor &
Zingone, S. ramonii Montresor (Montresor 1995), S.
rotunda Lewis (Lewis 1991) and S. trochoidea, respec-
tively (Table S1). This diversity in the samples included
also empty coccoid stages of Follisdinellum G.Versteegh
(Versteegh 1993) and Calciperidinium G.Versteegh
(Versteegh 1993), but it has not yet been possible to
establish strains from them.

Forty new sequences from the Mediterranean Sea and
other oceans were submitted to the NCBI database: JQ422480-
JQ422519 (Table S2).

Figure 3 shows the molecular sequence variation within
four major clades of Scrippsiella illustrated as TCS ribotype
networks. For the PRE clade, three morphospecies were
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included, and a single ribotype was identified for S. ramonii,
with three sequences all derived from Italian strains. For S.
precaria, two different ribotypes from Italy, Greece and
Australia were identified. The samples from Italy and
Greece shared the same ribotype, whereas the Australian
ribotype was different in 13 sites of the sequence. Six
different ribotypes from Iran and China were present among
eight sequences of S. irregularis Attaran-Fariman & Bolch
(Attaran-Fariman and Bolch 2007). There were a total of 63
and 76 mutational steps between the three species, respec-
tively. Thirteen strains of the morphospecies S. lachrymosa
(LAC clade) from China, Canada, Norway, Portugal,
Scotland, Greece and Germany were included, whereas a
total of 47 mutational steps were found between the six
distinct ribotypes. Three of the six ribotypes were found in
samples from Norwegian coastal waters, and two different
ribotypes in samples from the Shetland Islands, Scotland.

From the recent Mediterranean samples, eight different
ribotypes were assigned to the STR-SC. All available
sequences clustering within the three distinct clades of the
STR-SC (i.e. STR1, STR2 and STR3) were included in the
analysis and the clades were each analysed separately. In the
STR1 clade, four groups of nine different ribotypes in total
were identified (seven newly sequenced strains from Italy
and Greece were included in the analysis). In the STR2
clade (including the true S. trochoidea), five different ribo-
types with a total of 14 mutational steps were found.

Sequences of “C.” levantinum and related taxa belonging
to the STR3 clade comprised 22 different ribotypes from
strains sampled worldwide. Six of these ribotypes were
assigned to “Calciodinellum”, 12 mutational steps apart
from S. trochoidea-like sequences. The remaining 18 ribo-
types, with up to 51 mutational steps in between, showed the
morphology of S. trochoidea, which was divisible into
roughly seven ribotype groups.

Discussion

In recent years, much effort has been devoted to the documen-
tation of marine biodiversity (Beaugrand et al. 2010; Tittensor
et al. 2010; Williams et al. 2010; http://www.coml.org); how-
ever, exact species numbers and correct scientific names are
still needed formanymarine organisms. This is particularly true
for such unicellular life forms as the (calcareous) dinophytes,
which have importance for the reconstruction of ancient circu-
lation and productivity of the world’s oceans and thus provide
basic data for the impact of the global climate change as paleo-
environmental tools (Zonneveld et al. 1999; Esper et al. 2004;
Meier et al. 2004; Vink 2004). Extant calcareous dinophytes
have been collected frequently in pelagic environments during
field trips using scientific research vessels, and relatively few
studies have examined samples from coastal waters (Montresor
et al. 1998; Godhe et al. 2001; Gottschling and Kirsch 2009).
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The sediment-collecting tool described in Gottschling
and Kirsch (2009) has enabled us to collect many samples
within a short period of time. When compared to other
oceans, the Mediterranean Sea is rather well sampled and
investigated in terms of biodiversity assessment. The Gulf
of Naples has been a primary research area for calcareous
dinophytes, whereas other parts of the Mediterranean Sea,
such as Greek coastal sites, have scarcely been sampled so
far. We have identified morphologically 17 species of the

Thoracosphaeraceae (Table S1), representing about two-
thirds of the species known from the Mediterranean Sea,
where approximately 27 morphospecies are distinguished
currently (Montresor et al. 1998; Meier et al. 2002; Gómez
2003; Satta et al. 2010; Zinssmeister et al. 2011).
Nevertheless, species diversity in the Mediterranean Sea
appears much higher in comparison to other marine environ-
ments such as the North Sea, from which fewer than ten
morphospecies of calcareous dinophytes have been

Fig. 2 a–l. Morphological
diversity of calcareous
dinophytes as found in the
Mediterranean Sea, strain
number is given, if no strain
number is available the
provenance is given (scanning
electron microscopy of coocoid
stage a-g, j and theca h, i and k,
l; all at the same scale) a
Scrippsiella trifida (GeoB 433);
b Calciperidinium
asymmetricum (Gallipoli,
Italy); c Follisdinellum spec.
(Salerno, Italy); d–f coccoid
stages, morphotypes of
Scrippsiella trochoidea (GeoB
283, GeoB*185, GeoM 5137);
g Calcicarpinum bivalvum
(Salerno, Italy); h small theca of
Calcicarpinum bivalvum (GeoB
230); i small theca of
Scrippsiella trifida (GeoB 401);
j Calciodinellum spec.
(Salerno, Italy); k small theca of
Scrippsiella trochoidea (GeoB
376); l mid-sized theca of
Scrippsiella trochoidea
(GeoB*185)
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Fig. 3 Molecular diversity of ITS ribotypes within different clades of the
Thoracosphaeracea (created with TCS). Number of similar ribotypes
indicated by circle size, presumable cryptic species indicated by dashed
grey line, newly added sequences from the Mediterranean Sea indicated
in bold. The different morphospecies are colour-coded (see legend).

GenBank accession numbers of used sequence data are listed in Table
S1. LAC Clade including Scrippsiella lachrymosa, PRE clade includung
S. precaria, S. ramonii and S. irregularis, STR1, STR2 and STR3 are
major assemblages of the S. trochoidea species complex
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documented so far (Persson et al. 2000; Godhe et al. 2001;
Gottschling and Kirsch 2009). The species found in the sam-
ples from Italy, Greece and Crete comprise not only frequently
encountered members of the Thoracopshaeraceae (including S.
trochoidea), but also a number of taxa such as Calciperidinium
and Follisdinellum that are known primarily from the fossil
record, and which have been documented from recent sedi-
ments only rarely (Montresor et al. 1998; Tommasa et al. 2004).
Unfortunately, it was not possible to establish strains until now,
and it remains to be determined whether sampling at alternative
dates during the course of a year could solve this problem.

Our ribotype networks show clearly distinct classes of
sequence similarity within the clades PRE, LAC, STR1,
STR2, and STR3. This supports the assumption that such
clades represent more than a single reproductive unit (i.e.
biological species). The STR3 clade in particular might have
relavence to assess the minimal absolute number of species,
since it includes morphologically and ecologically distinct
forms (Meier and Willems 2003; Gottschling et al. 2005b;
Meier et al. 2007): Scrippsiella trochoidea is characterised
by benthic coccoid cells developing numerous spines, while
“C.” levantinum is a pelagic species with smooth coccoid
stages; both are doubtlessly isolated from another reproduc-
tively. Under the assumption that “C.” levantinum repre-
sents a single species, seven additional, molecularly
distinct groups of ribotypes (all of which corresponding
morphologically to S. trochoidea-like species) can be esti-
mated for the STR3 clade. The same approach leads to the
differentiation of four species in the STR1 clade, two spe-
cies in the STR2 clade (including the true S. trochoidea:
Zinssmeister et al. 2011), and four S. lachrymosa-like spe-
cies as minimal numbers. In total, the six morphospecies
included in the four TCS network analyses might segregate
into the considerably high number of 21 species circum-
scribed molecularly, but crossing experiments using mono-
clonal strains are needed to verify the status of isolated
reproductive units.

Especially in unicellular organisms such as (calcareous)
dinophytes, species determination based on morphology is
highly time- and cost-consuming and frequently subject to
error. Moreover, morphologically plasticity (Zinssmeister et
al. 2011) and cryptic species (Montresor et al. 2003;
Gottschling and Kirsch 2009; Gottschling et al. 2005b)
necessitate rapid and accurate tools for the reliable identifi-
cation of species.

DNA barcoding (Hebert et al. 2003; Tautz et al. 2003;
http://www.barcodinglife.com) has become a comparatively
reasonable and fast methodology for determination of spe-
cies, including animals (Hebert et al. 2003, 2004; Ward et al.
2005), plants (Kress et al. 2005; CBOL Plant Working
Group 2009) and fungi (Feau et al. 2009). For dinophytes,
the mitochondrial genes cytochrome b oxidase and cyto-
chrome oxidase I have been proposed as general barcoding

markers (Lin et al. 2009; Stern et al. 2010). However,
resolution down to species level has not been satisfactory.
Such loci might instead be useful for taxonomically broad
investigations. As in fungi (Horton and Bruns 2001) the
nuclear ITS has been recommended repeatly as an appropri-
ate barcoding region for dinophytes at the species level
(Gottschling et al. 2005b; Litaker et al. 2007; Gottschling
and Kirsch 2009; Genovesi et al. 2011; Stern et al. 2012).
Moreover, enormous numbers of ITS sequences have been
accumulated in GenBank over the last decade, tendering for
taxonomic comparison.

Our own sequencing efforts, with emphasis on the
Thoracosphaeraceae, have confirmed that the ribosomal
ITS region is suitable as a species-specific DNA barcode
(Table S1). We have identified ten described morphospe-
cies and one variety of calcareous dinophytes by se-
quence comparison. However, sequence data are
available only for 13 of the Thoracosphearaceae species
present in the Mediterranean Sea (D´Onofrio et al. 1999;
Montresor et al. 2003; Gottschling et al. 2005a; Penna et
al. 2010; Zinssmeister et al. 2011), and the completion of
our studies has importance also for future taxonomic
work. For example, S. precaria has been described from
the Gulf of Naples (Montresor and Zingone 1988), but
sequences of this species from the Mediterranean Sea
have been not published so far. The establishment of a
new strain collected close to the type locality and its
subsequent molecular characterisation as presented here
might contribute to disentangle the complex alpha-
taxonomy of calcareous dinophytes. Moreover, two new
Scrippsiella species have been described morphologically
and included in a molecular phylogeny (Zinssmeister
et al. in press).

In conclusion, there is no unambiguous criterion for
species delimitation in unicellular organisms such as the
dinophytes. Determination has been particularly chal-
lenging in calcareous dinophytes, since species such as
S. trochoidea show enormous genetic variation and dis-
tinct groupings, but are indistinguishable in gross mor-
phology (‘cryptic species’: Montresor et al. 2003;
Gottschling et al. 2005b; Gottschling and Kirsch
2009). Occasionally, closely related species occur at
the same locality, as has been shown previously also
for different strains assigned to the calcareous morpho-
species S. lachrymosa (Gottschling and Kirsch 2009),
but also for other dinophytes such as Alexandrium tam-
arense (Lilly et al. 2007; Genovesi et al. 2011). If
closely related species really occur sympatrically, then
a driving force other than spatial isolation must be
ascertained for speciation in calcareous dinophytes.
More research is necessary to fully understand the di-
versification of calcareous dinophytes and the mecha-
nisms causing it.
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